화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.509, No.1, 255-261, 2019
CircUSP45 inhibited osteogenesis in glucocorticoid-induced osteonecrosis of femoral head by sponging miR-127-5p through PTEN/AKT signal pathway: Experimental studies
Purpose: large doses of glucocorticoids (GCs) are the most common cause of glucocorticoid-induced osteonecrosis of femoral head (GIONFH). Although awareness of GIONFH among patients with GCs history has increased over recent years, several studies indicate that its mechanism remains unclear. Methods: To evaluate the function of circUSP45 in GIONFH, femoral heads in GIONFH patients or femoral heads in fracture patients were collected. In vitro, RT-PCR, FISH, RNA pull down and Western blotting assay were used to evaluate the function of circUSP45. In addition, we also verified the effects of circUSP45 on osteogenesis using alizarin red staining. In vivo, we used HE staining and microCT analysis to evaluate the bone mass. Moreover, the mechanism of circUSP45 regulating osteogenesis through the miR-127-5p/PTEN/AKT pathway was also investigated. Results: The results showed that expression of circUSP45 increased in GIONFH patients. The over-expression of circUSP45 decreases osteogenic gene expression and inhibits the proliferation of BMSCs. Furthermore, circUSP45 was located mainly in the cytoplasm and directly interacted with miR-127-5p. MiR-127-5p acts with its targets PTEN to regulate the osteogenesis. MicroCT and HE staining verify the function of circUSP45 in GIONFH rat model. Conclusion: CircUSP45 decreases osteogenesis in bone GIONFH by sponging miR-127-5p through PTEN/AKT signal pathway. (C) 2018 Elsevier Inc. All rights reserved.