화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.508, No.4, 1279-1285, 2019
CFTR activation suppresses glioblastoma cell proliferation, migration and invasion
The aim of this study was to investigate the function of Cystic fibrosis transmembrane conductance regulator (CFTR) in human glioblastoma (GBM) cells. Data dining results of the Human Protein Atlas showed that low CFTR expression was associated with poor prognosis for GBM patients. We found that CFTR protein expression was lower in U87 and U251 GBM cells than that in normal humane astrocyte cells. CFTR activation significantly reduced GBM cell proliferation. In addition, CFTR activation significantly abrogated migration and invasion of GBM cells. Besides, CFTR activator Forskolin treatment markedly reduced MMP-2 protein expression. These effects of CFTR activation were significantly inhibited by CFTR inhibitor CFTRinh-172 pretreatment. Our findings suggested that JAK2/STAT3 signaling was involved in the anti-glioblastoma effects of CFTR activation. Moreover, CFTR overexpression in combination with Forskolin induced a synergistic anti-proliferative response in U87 cells. Overall, our findings demonstrated that CFTR activation suppressed GBM cell proliferation, migration and invasion likely through the inhibition of JAK2/STAT3 signaling. (C) 2018 Elsevier Inc. All rights reserved.