Biochemical and Biophysical Research Communications, Vol.506, No.3, 648-652, 2018
High sensitivity of cerebellar neurons to homocysteine is determined by expression of GluN2C and G1uN2D subunits of NMDA receptors
Homocysteine (HCY) induced neurotoxicity largely depends on interaction of this endogenous amino acid with glutamate NMDA receptors (NMDARs). This receptor type is composed by GluN1 and different GluN2 (A, B, C or D) subunits. However, the receptor activity of HCY in brain regions which differ in relative contribution of GluN2 subunits was not tested so far. In the current study, we explored the action of HCY on cerebellar neurons which natively express GIuN2C and GIuN2D subunits of NMDARs and compared this with the action of HCY on cortical neurons which are mainly composed by GIuN2A and GluN2B subunits. To validate obtained results, we also studied the responses to HCY in recombinant GluN1/2C and GluN1/2D NMDARs expressed in HEK293T cells. Responses to HCY were compared to membrane currents evoked by glutamate or by the specific agonist NMDA. First, we found that on HEK cells expressing GluN1/2C or GluN1/2D NMDARs, HCY was full agonist producing membrane currents similar in amplitude to currents induced by glutamate. The EC50 values for these particular receptor subtype activation were 80 AM and 31 AM, respectively. Then, we found that HCY similarly to NMDA, evoked large slightly desensitizing membrane currents in native NMDARs of cerebellar and cortical neurons. In cortical neurons, the ratio of the respective currents (I-HCY/I-NMDA) was 0.16 and did not significantly change during in vitro maturation. In sharp contrast, in cerebellar neurons, the ratio of currents evoked by HCY and NMDA was dramatically increased from 0.31 to 0.72 from 7 to 21 day in culture. We show that least 75% of HCY-induced currents in cerebellum were mediated by GluN2C- or GluN2D-containing NMDARs. Thus, our data revealed a large population of cerebellar NMDA receptors highly sensitive to HCY which suggest potential vulnerability of this brain region to pathological conditions associated with enhanced levels of this neurotoxic amino acid. (C) 2018 Elsevier Inc. All rights reserved.