Bioresource Technology, Vol.275, 44-52, 2019
Identification of the pollutants' removal and mechanism by microalgae in saline wastewater
This study investigated the growth dynamics of a freshwater and marine microalgae with supported biochemical performance in saline wastewater, the pollutants assimilation by a developed method, and the mechanism of salinity's effect to pollutants assimilation. Maximal biomass yield was 400-500 mg/L at 0.1-1% salinity while the TOC, NO3--N, PO43--P were eliminated 39.5-92.1%, 23-97.4% and 7-30.6%, respectively. The biomass yield and pollutants removal efficiencies reduced significantly when salinity rose from 0.1 to 5%. The freshwater Chlorella vulgaris performed its best with a focus on TOC removal at 0.1% salinity. The marine Chlorella sp. was prominent for removing NO3--N at 0.1-1% salinity. Through the developed method, the freshwater C. vulgaris competed to the marine microalgae referring to pollutants assimilation up to 5% salinity. This study unveiled the mechanism of salinity's effect with evidence of salt layer formation and salt accumulation in microalgae.