AIChE Journal, Vol.41, No.9, 2040-2046, 1995
Droplet Deposition and Momentum-Transfer in Annular-Flow
Entrainment and deposition in gas-liquid annular upflow are known to account for as much as 20% of the pressure gradient, through droplet accelerations in the core region. Momentum is transferred from the core when droplets decelerate upon impact with the liquid film. It is usually assumed that all of this momentum is transferred to the film, essentially driving the film upward in conjunction with interfacial friction. New data, obtained for annular gas-liquid upflow in a 5.08-cm-ID tube, are used in a momentum balance analysis to determine the mechanism of momentum transfer from depositing droplets. Measurements include the liquid film thickness, wall shear stress, pressure gradient entrained liquid fraction, droplet deposition rate, droplet centerline axial velocity, and mass-average drop size for two gas-liquid systems. This analysis supports the idea that large droplets displace the film locally and decelerate primarily at the wall, effectively transferring negligible momentum to the liquid film.