화학공학소재연구정보센터
Chemical Engineering Science, Vol.196, 214-224, 2019
Oxidation-assisted pulsating three-stream non-Newtonian slurry atomization for energy production
Past work involving validated "cold-flow" CFD modeling of self-generating and self-sustaining pulsating near-sonic non-Newtonian slurry atomization elucidated acoustic signatures, atomization mechanisms, and the effects of numerics and geometric permutations. The numerical method has now been incorporated with exothermic oxidation reaction kinetics relations along with radiation, i.e. no longer cold-flow. These models provide substantially increased model rigor and allow for new pulsing thermal measures which help assess injector thermal stresses. Twelve models have been run for extended periods of time in order to investigate the effects of dramatic changes in gas feed rate and prefilming (retraction) length. Given the new metrics and models, multiple statistically optimized designs are potentially available depending on the objective function(s) and their relative weightings in the overall value proposition to the project. In the case in which all metrics have equal value to the project and are simultaneously considered in a statistical model, the optimum design involves a mid-level of retraction and a mid-level gas feed rate. If, however, more relative weighting is placed on the importance of droplet size minimization and injector thermal management in lieu of feed passage pressure drop minimization, the optimum design involves a similar retraction but a very high level of gas feed rate. (C) 2018 Elsevier Ltd. All rights reserved.