Heat Transfer Engineering, Vol.40, No.3-4, 330-345, 2019
A Clothing Ventilation and Heat Loss Electric Circuit Model with Natural Convection for a Clothed Swinging Arm of a Walking Human
This work aims to develop a computationally effective electric circuit model to estimate the ventilation and heat transfer for walking human in the presence of natural convection. The ventilation circuit includes flow resistance, inductance, and electromotive force elements. It is coupled to an electric resistance circuit of heat flows to adjust the temperature difference inducing natural convection flow. The coupled ventilation and heat circuit models predicted both the segmental ventilation rate and heat loss from the arm at different walking and wind speeds. The developed model of the segmental ventilation and heat transfer from the clothed human segment was validated by performing experiments on a walking thermal manikin using tracer gas method. Good agreement was observed between the model predictions and the experiment at a maximum relative error of 10% lying within the standard deviation range. Results showed that the simplified ventilation-heat circuit models succeeded in estimating the natural convection effect at low computational cost. Moreover, it was shown that the effect of natural convection is more significant in walking at no wind than in windy condition. Accounting for natural convection effect increases the segmental ventilation and heat loss at low air permeability (0.02 m/s) by 68% and 20%, respectively.