화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.44, No.6, 3373-3381, 2019
The use of acidified palm oil mill effluent for thermophilic biomethane production by changing the hydraulic retention time in anaerobic sequencing batch reactor
The feasibility of thermophilic biomethane production from acidified palm oil mill effluent (POME) was assessed in a 5 L anaerobic sequencing batch reactor (ASBR). The effects of various hydraulic retention time (HRT) (10-1 d) on methane production performance and the stability of ASBR in treating acidified POME were evaluated herein. It was found that the highest methane productivity of 5.65 L CH4/L/d could be attained at HRT of 2 d. However, the removal of chemical oxygen demand (COD) and volatile fatty acid (VFA) at this HRT is rather low (65-62%) hence making it inefficient to operate at HRT 2 d since most of the contaminants remained in the liquid streams. Thus the most recommended HRT was 3 d with maximum methane productivity of 3.96 L CH4/L/d with corresponding methane yield of 260.3 L CH4/kgCOD(removed). The COD removal efficiency at 3 d HRT was 71%, and the VFA consumption was more than 80%. The correlation of total VFA: total alkalinity (TVFA: TA) at HRT of 3 d was found to be 0.1. This recommended HRT of 3 is equally shorter than any previously reported application of POME as a substrate for thermophilic biomethane. (C) 2018 Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.