화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.44, No.1, 457-468, 2019
Experimental study on diffusion combustion of high-speed hydrogen round microjets
Experimental data on the phenomenon of nozzle choking at diffusion combustion of a high-speed hydrogen microjet at its ignition close to the nozzle are presented. As is found, such a phenomenon is due to the nozzle heating by the << bottleneck flame region >>, which is generated at the origin of microjet. This flow region persists up to transonic velocities of the microjet preventing from cooling of the nozzle and the transition to supersonic speed. In the case of hydrogen ignition far from the nozzle exit in supersonic conditions, the << bottleneck flame region >> is suppressed, the flame becomes detached from the nozzle which is no longer heated so that the supersonic range is attained. The subsonic combustion of hydrogen microjet is stabilized by the << bottleneck flame egion >>, while the supersonic one becomes more stable at the generation of shock cells. The results of the present study provide new details on the combustion of hydrogen microjets and could by useful for the operation of different burners. (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.