화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.43, No.46, 21269-21278, 2018
Comparison of co-gasification efficiencies of coal, lignocellulosic biomass and biomass hydrolysate for high yield hydrogen production
The diversity in the chemical composition of lignocellulosic feedstocks can affect the conversion technologies employed for hydrogen production. Gasification and co-gasification activities of lignocellulosic biomass, biomass hydrolysate, and coal were evaluated for hydrogen rich gas production. The hydrolysates of biomass materials showed the best performance for gasification. The results indicated that biomass hydrolysates obtained from lignocellulosic biomass were more sensitive to degradation and therefore, produced more hydrogen and gaseous products than that of lignocellulosic biomass. The effects of feed (kenaf and sorghum hydrolysate), flow rate (0.3-2.0 mL/min) and temperature (700-900 degrees C) on hydrogen production and gasification yields were investigated. It was observed that 0.5 mL/min the optimum feed flow rate for the maximum total gas and hydrogen production. Synergism effects were observed for co-gasification of coal/biomass and coal/biomass hydrolysate. In all co-gasification processes, the main component of the gas mixture was hydrogen (>= 70%). (C) 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.