International Polymer Processing, Vol.33, No.2, 180-190, 2018
The Role of Extrusion Conditions on the Mechanical Properties of Thermoplastic Protein
Mechanical properties of Novatein thermoplastic protein compounded at different extrusion temperatures and processing water contents have been examined in a factorial experiment. Thermoplastic proteins are moisture sensitive and can be prone to thermal degradation during processing. Processing water was varied between 30 and 45 parts per hundred parts bloodmeal while the extrusion temperature was varied between 120 and 150 degrees C to identify a processing window suitable for process scale up. To resolve any effects processing water had on protein-protein interactions from its plasticising effect, injection molded specimens were mechanically tested both as molded and after conditioning at controlled temperature and humidity. Despite all conditioned samples having approximately the same moisture content, mechanical properties were different. Tensile strength and modulus decreased with increasing processing water at the same equilibrium moisture content. DMA and WAXS suggested this was due to changes in chain mobility within the amorphous phase of the material, rather than conformational change towards a more ordered state. Properties of unconditioned specimens were mostly dependent on the plasticising effect of different amounts of processing water remaining in the material after injection molding. Extrusion temperature had very little effect on mechanical properties, suggesting that Novatein is robust enough to handle some temperature variations during processes such as injection molding.