화학공학소재연구정보센터
Journal of Colloid and Interface Science, Vol.540, 382-388, 2019
Tuning roughness features of thin film composite polyamide membranes for simultaneously enhanced permeability, selectivity and anti-fouling performance
Thin film composite (TFC) polyamide membranes set the golden standard for reverse osmosis technology, but tuning their permeability and selectivity remains a major challenge because of the inherent permeability-selectivity trade-off. Creating nano-sized voids within the polyamide rejection layer can tune the membrane roughness and increase its effective filtration area to improve the water permeability. Here we prepare nano-foamed polyamide rejection layers by adding sodium bicarbonate into the aqueous solution of amine monomers. We show a systematic evolution of the roughness structure of polyamide membranes, with increasingly leaf-like and belt-like features appearing under enhanced nano-foaming conditions. These nano-foamed features can result in remarkable improvements in both water permeability and salt rejection and reduce membrane fouling propensity at the same time. Our study paves a new research direction for designing future generation of desalination membranes, which holds vast potential to reduce the cost and energy consumption of desalination while achieving improved product water quality. (C) 2019 Elsevier Inc. All rights reserved.