Journal of Colloid and Interface Science, Vol.535, 380-391, 2019
"Gate" engineered mesoporous silica nanoparticles for a double inhibition of drug efflux and particle exocytosis to enhance antitumor activity
"Gate" engineered mesoporous silica nanoparticles (MSN) have been extensively applied in cancer ther-anostics. Due to the complexity of tumor development and progression, with chemotherapy alone, it has often been difficult to achieve a good therapeutic effect. Currently, it has been shown that the combination with photothermal therapy overcomes the shortcoming of chemotherapy. In most studies, the photothermal effect has proven to accelerate drug release from nanocarriers and ablate malignant cells directly, but the influence on the intracellular fate of nanocarriers remains unknown. Herein, a lipophilic cyanine dye Cypate acting as a photothermal converting agent was conjugated on the external surface of MSN through a disulfide bond (MSN-Cy) and D-alpha-tocopherol polyethylene glycol 1000 succinate (TPGS) was coated on the outside of the MSN-Cy via a hydrophobic interaction (TCMSN) to cover the pores, preventing drug preleakage in the circulation. The TCMSN underwent exocytosis through the lysosome-mediated pathway. Moderate heat induced by near-infrared light promoted lysosome disruption, which thus partly inhibited lysosome-mediated particle exocytosis. In the meantime, TPGS, as a P-glycoprotein inhibitor, blocked the drug efflux. This research elaborated the photothermal effect from a new perspective inhibiting particle exocytosis. The as-designed "gate" engineered MSN realized a double inhibition of drug efflux and particle exocytosis from cancer cells, thus sustaining the drug action time and enhancing the antitumor activity.(C) 2018 Elsevier Inc. All rights reserved.