Journal of Hazardous Materials, Vol.365, 366-374, 2019
Intra-NAPL diffusion and dissolution of a MGP NAPL exposed to persulfate in a flow-through system
Intra-NAPL diffusion is a critical process that can influence NAPL/water mass transfer. A series of physical model experiments was performed to investigate the role of intra-NAPL diffusion on the transient dissolution of a complex multicomponent NAPL subjected to persulfate treatment. To support these observations, a diffusion based model was developed and calibrated using the experimental data. The experimental results indicated that while persulfate was able to completely degrade dissolved phase components, mass loss after 410 pore volumes of persulfate flushing was less than the no-treatment system. Intra-NAPL diffusion limitations were not observed in the physical model experiments. A comparison of experimental and simulated results indicated that processes related to persulfate/NAPL interactions restricted mass transfer, and yielded multicomponent mass transfer rate coefficients that were 30% of those estimated from an equivalent water-flushing experiment. Simulation results showed that a combination of NAPL composition and geometry, and interphase mass transfer rate can yield intra-NAPL diffusion limitations. Remedial technologies that rely on the aggressive flushing of reagents into NAPL zones may give rise to intra-NAPL diffusion limitations, which will directly affect treatment efficiency.