화학공학소재연구정보센터
Journal of Loss Prevention in The Process Industries, Vol.57, 254-272, 2019
An engineer-based methodology to perform Explosion Risk Analyses
Explosion Risk Analyses (ERA) are usually performed as part of the Quantitative Risk Assessment (QRA). The combination of frequencies and associated consequences allow to get a risk picture of the facility and provides decision support to the risk owner. The outcomes of this study allow also to provide, after adequate interpretation, Design Explosion Loads (DEL) to engineering disciplines (e.g. structures, piping and equipment) according to a given Risk Acceptance Criterion (RAC). For most of the offshore applications, the consequence part of the ERA is done with Computational Fluids Dynamics (CFD) to properly handle congestion and confinement effects as simple models cannot. With the increase of computational power, thanks to Moore's Law, there is an increasing trend to perform more and more CFD simulations with the expectation to improve confidence in results while taking more and more probabilistic variables into account. In the early 2000s, it was 10's of simulations, in the 2010s, it was 100's and now it is common to reach 1000's. However, one should remark that there is still a lot of uncertainties behind these studies since the geometry maturity is generally not enough especially at the early stage of detailed engineering when the preliminary Design Explosion Loads (pDEL) should be provided to disciplines. Anticipated congestion is normally put in the model, but it usually put a bias at the beginning of the consequence modelling part. In the risk-based approach, the frequency part is also of major importance. One need to keep in mind that consequence refinement should be done in close relation with the frequency refinement to ensure consistency in the approach. The practical methodology presented in this paper was developed to provide reliable inputs to engineering disciplines, taking into consideration uncertainties and potential spread of results while using a reasonable number of CFD scenarios. Finally, the safety engineers are still the key contributor in the performance of the ERA, and hence brain-based design is kept in the loop while minimizing computer-based design.