Journal of Polymer Science Part A: Polymer Chemistry, Vol.57, No.3, 395-402, 2019
Synthesis of asymmetrically substituted head-to-head polyacetylenes from 2,3-disubstituted-1,3-butadienes
Asymmetrically substituted head-to-head polyacetylenes with phenyl and triphenylamine, thienyl or pyrenyl side groups were synthesized through anionic or controlled radical polymerization of 2,3-disubstituted-1,3-butadienes and subsequent dehydrogenation process. Anionic polymerizations of the designed monomers bearing pendent triphenylamine and thienyl group gave narrow disperse disubstituted precursor polybutadienes with exclusive 1,4- or 4,1-structure, which were confirmed by GPC and NMR measurements. In addition, the monomers possessing pyrenyl group were polymerized via nitroxide mediated radical polymerization and the resulting polymers were obtained with controlled molecular weight and low polydispersities. These polybutadiene precursors were then dehydrogenated in the presence of 2,3-dichloro-5,6-dicyano-1,4-benzoquinone. Thus asymmetrically substituted head-to-head polyacetylenes were obtained as indicated by H-1 NMR. The properties of polybutadiene precursors and the corresponding polyacetylenes were analyzed by UV-vis, DSC, and TGA. (c) 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 395-402
Keywords:anionic polymerization;dehydrogenation;disubstituted butadiene;nitroxide mediated radical polymerization;substituted polyacetylenes