Journal of the American Chemical Society, Vol.140, No.48, 16413-16417, 2018
Reprogramming Exosomes as Nanoscale Controllers of Cellular Immunity
Exosomes are naturally occurring membranous vesicles secreted by various types of cells. Given their unique and important biological and pharmacological properties, exosomes have been emerging as a promising form of nanomedicine acting via efficient delivery of endogenous and exogenous therapeutics. Here we explore a new concept of utilizing endogenously derived exosomes as artificial controllers of cellular immunity to redirect and activate cytotoxic T cells toward cancer cells for killing. This was achieved through genetically displaying two distinct types of antibodies on exosomal surface. The resulting synthetic multivalent antibodies retargeted exosomes (SMART-Exos), which express monoclonal antibodies specific for T-cell CD3 and cancer cell-associated epidermal growth factor receptor (EGFR), were shown to not only induce cross-linking of T cells and EGFR-expressing breast cancer cells but also elicit potent antitumor immunity both in vitro and in vivo. This proof-of-concept study demonstrates a novel application of exosomes in cancer immunotherapy and may provide a general and versatile approach for the development of a new class of cell-free therapy.