화학공학소재연구정보센터
Langmuir, Vol.35, No.7, 2842-2853, 2019
Interaction Mechanisms of Zwitterions with Opposite Dipoles in Aqueous Solutions
Zwitterionic groups have been widely used in antibiofouling surfaces to resist nonspecific adsorption of proteins and other biomolecules. The interactions among zwitterionic groups have attracted considerable attention in bioengineering, whereas the understanding of their nanomechanical mechanism still remains limited. In this work, the interaction mechanisms between two zwitterionic groups with opposite dipoles, i.e., phosphorylcholine (PC) and sulfobetaine (SB), have been investigated via direct force measurements using an atomic force microscope (AFM) and dynamic adsorption tests using the quartz crystal microbalance with dissipation monitoring technique (QCM-D) in aqueous solutions. The AFM force measurements show that the adhesive forces between contacted zwitterionic surfaces during separation in both symmetric and asymmetric configurations were close, mainly due to the enforced alignment of opposing dipole pairs via complementary orientations under confinement. The solution salinity and pH had almost negligible influence on the adhesion measured during surface separation. The QCM-D adsorption tests of PC-headed lipid on PC and SB surfaces showed some degree of adsorption of lipid molecules on the SB surface, whereas not on the PC surface. The different adsorption behaviors indicate that because the outermost negatively charged sulfonic group on the SB faced the aqueous solution, this configuration could facilitate it to form an attractive electrostatic interaction with the PC head of lipid molecules in the solution. This work shows that in addition to hydration and steric interactions, the zwitterionic dipole-induced interactions play an important role in the adhesion and antifouling behaviors of the zwitterionic molecules and surfaces. The improved fundamental understanding provides useful insights into the development of new functional materials and coatings with antifouling applications.