Protein Expression and Purification, Vol.155, 59-65, 2019
The transient production of anti-TNF-alpha antibody Adalimumab and a comparison of its characterization to the biosimilar Cinorra
Recombinant antibodies have emerged over the last few decades as the fastest growing class of therapeutic proteins for autoimmune diseases. Post-translation modifications of antibodies produced by human cell lines are highly consistent with those existing in natural human proteins and this is a major advantage of utilizing these cell lines. Cinorra is a biosimilar form of the antibody Adalimumab, which is an antagonist of TNF-alpha used for the treatment of autoimmune diseases. Adalimumab and Cinorra were produced by stable expression from CHO cells. The aim of this study was to select HEK cells as a host for producing Adalimumab to reveal whether the antibody produced by this human-derived cell line has similar characterization to Cinorra. Adalimumab was transiently produced in HEK-293T cells, characterized and analyzed for its properties. Circular dichroism spectroscopy confirmed a strong structural similarity of the expressed antibody with Cinorra. Likewise its binding activity and kinetic affinity to TNF-alpha (EC50 = 416.5 ng/ml, KD = 3.89 E-10 M,) were highly similar to that of Cinorra (EC50 = 421.2 ng/ml and KD = 3.34 E-10 M,). Additionally there was near identical neutralization of TNF-alpha-mediated cellular cytotoxicity (IC50 of the expressed = 4.93 nM; IC50 of Cinorra = 4.5 nM). Results indicate that Adalimumab produced by HEK-293T cells possesses a similarly efficient function and biological activity to Cinorra. Consequently, human-derived host cells with human post-translational modifications might potentially provide a basis for the development of Adalimumab with pharmaceutical properties for research and therapeutic use.