화학공학소재연구정보센터
Solar Energy, Vol.173, 173-191, 2018
Relevance of PV with single-axis tracking for energy scenarios
The two main options on the market for utility-scale photovoltaic (PV) installations are fixed-tilted and single axis tracking systems with a horizontal north-south-orientated axis. However, only a few global energy system studies consider the latter. The objective of this paper is to investigate the impact of single-axis tracking PV on energy scenarios. For this purpose, two scenarios with and without the single-axis tracking option are studied for 100% renewable energy (RE) systems in 2030. To find the optimum energy mix for both scenarios, the total annual cost computed by the LUT Energy System model is minimized. The satellite-based input global data have a temporal resolution of one hour and a spatial resolution of 0.45 degrees x 0.45 degrees. Furthermore, a model to estimate the annual yield of single-axis tracking PV is proposed and validated by using the PVsyst software. The simulation results are found to be within a 4% margin to the respective simulation results of PVsyst. Both scenarios demonstrate that a 100% RE system is possible at a low cost, where PV and wind power are the dominating generation technologies. Nevertheless, the results also show a significant effect of single-axis tracking PV. The global generation share of PV increases from 47% to 59%, and 20% of the total electricity is generated by single axis tracking PV, while the share of wind energy decreases from 31% to 21%. Additionally, curtailment, power transmission requirements, storage demand, and the total cost decrease. The global average levelized cost of electricity decreases by 6% from 54.8 to 51.4 (sic)/MWh. The findings indicate that energy system modeling should include single-axis tracking.