Clean Technology, Vol.25, No.1, 46-55, March, 2019
가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응기구에 대한 비교 연구
Comparative Studies on Mechanism of Photocatalytic Degradation of Rhodamine B with Sulfide Catalysts under Visible Light Irradiation
E-mail:
초록
CdS 및 CdZnS/ZnO를 침전법으로 제조하여 가시광선하에서의 로다민 B의 광분해 반응에 대한 광촉매로 이용하였다. 제조된 광촉매들은 X선 회절분석기와 UV-vis 확산반사 분광법 등으로 특성을 분석하였으며, 그 결과 원하는 결정구조를 지닌 광촉매들이 생성되었으며 또한 CdS 및 CdZnS/ZnO 두 가지 광촉매 모두 자외선뿐만 아니라 가시광선 영역의 빛도 효율적으로 흡수함을 알 수 있었다. 여러 종류의 활성 화학종에 대한 포집제들을 첨가하면서 각각의 광촉매에 대한 활성을 조사하였으며, 특히 두 가지 촉매상에서의 반응기구 차이점에 중점을 두고 고찰하였다. 이때 CH3OH, KI 및 p-benzoquinone을 각각 ㆍOH 라디칼, 광여기 정공 그리고 ㆍO2- 라디칼에 대한 포집제로 이용하였다. 각각의 광촉매상에서는 서로 다른 반응기구에 의해서 반응이 진행되는 것으로 나타났다. CdS 광촉매 반응에서는 ㆍO2- 라디칼이 그리고 CdZnS/ZnO 광촉매 반응에 있어서는 광여기 정공이 중요한 역할을 하는 것으로 판단되며, 따라서 CdS와 CdZnS/ZnO 각각의 광촉매상에서는 발색단 골격의 탈알킬화 반응 및 발색단 콘쥬케이트 구조의 절단 과정을 통하여 반응이 우선적으로 진행된다는 것을 알 수 있었다. 이러한 결과들은 CdS, CdZnS 그리고 ZnO 각각 반도체들의 전도대와 가전자대의 띠끝 전위와 활성 화학종 생성에 대한 산화환원 전위의 차이에 주로 기인한 것으로 생각된다.
CdS and CdZnS/ZnO materials were prepared using precipitation method and used as photocatalysts for the photocatalytic degradation of rhodamine B (RhB) under visible light irradiation. The prepared photocatalysts were also characterized by XRD and UV-vis DRS. The results indicated that the photocatalysts with intended crystalline structures were successfully obtained and both the CdS and CdZnS/ZnO can absorb visible light as well as UV. The photocatalytic activities were examined with the addition of scavenger for various active chemical species and the difference of reaction mechanisms over the catalysts were discussed. The CH3OH, KI and p-benzoquinone were used as scavengers for ㆍOH radical, photogenerated positive hole and ㆍO2 - radical, respectively. The CdS and CdZnS/ZnO showed different photocatalytic degradation mechanisms of RhB. It can be postulated that ㆍO2 - radical is the main active species for the reaction over CdS photocatalyst, while the photogenerated positive hole for CdZnS/ZnO photocatalyst. As a result, the predominant reaction pathways over CdS and CdZnS/ZnO photocatalysts were found to be the dealkylation of chromophore skeleton and the cleavage of the conjugated chromophore structure, respectively. The above results may be mainly ascribed to the difference of band edge potential of conduction and valence bands in CdS, CdZnS and ZnO semiconductors and the redox potentials for formation of active chemical species.
- Rao AN, Sivasankar B, Sadasivam V, J. Mol. Catal. A-Chem., 306(1-2), 77 (2009)
- Khanna A, Shetty V, Environ. Sci. Pollut. Res., 20, 5692 (2013)
- Chan SHS, Wu TY, Juan JC, Teh CY, J. Chem. Technol. Biotechnol., 86(9), 1130 (2011)
- Palominos R, Freer J, Mondaca MA, Mansilla HD, J. Photochem. Photobiol. A-Chem., 193, 139 (2008)
- Etacheri V, Valentin CD, Schneider J, Bahnemann D, Pillai SC, J. Photochem. Photobiol. C: Photochem. Rev., 25, 1 (2015)
- Li XZ, Li FB, Yang CL, Ge WK, J. Photochem. Photobiol. A-Chem., 141, 209 (2001)
- Lei Z, You W, Liu M, Zhou G, Takata T, Hara M, Domen K, Li C, Chem. Commun., 2142-2143 (2003).
- Ganesh RS, Sharma SK. Durgadevi E, Navaneethan M, Binitha HS, Ponnusamy S, Muthamizhchelvan C, Hayakawa Y, Kim DY, Superlattices Microstruct., 104, 247 (2017)
- Yue X, Yi S, Wang R, Zhang Z, Qiu S, Sci. Rep., 6, 22268 (2016)
- Chen F, Jia D, Cao Y, Jin X, Liu A, Ceram. Int., 41, 14604 (2015)
- Sehati S, Entezari MH, J. Colloid Interface Sci., 462, 130 (2016)
- Li Q, Meng H, Zhou P, Zheng Y, Wang J, Yu J, Gong J, ACS Catal., 3, 882 (2013)
- Zhu HY, Jiang R, Xiao L, Chang YH, Guan YJ, Li XD, Zeng GM, J. Hazard. Mater., 169(1-3), 933 (2009)
- Zhou YN, Wang YG, Wen T, Zhang SY, Chang BB, Guo YZ, Yang BC, J. Colloid Interface Sci., 467, 97 (2016)
- Lee GD, PArk SS, Jin YE, Hong SS, Clean Technol., 23(2), 196 (2017)
- Cui WQ, Ma SS, Liu L, Hu JS, Liang YH, McEvoy JG, Appl. Surf. Sci., 271, 171 (2013)
- Chen C, Zhao W, Li J, Zhao J, Environ. Sci. Technol., 36, 3604 (2002)
- Liang HJ, Jia ZC, Zhang HC, Wang XB, Wang JJ, Appl. Surf. Sci., 422, 1 (2017)
- Lee JH, Jin Y, Park SS, Hong SS, Lee GD, Appl. Chem. Eng., 26(3), 356 (2015)
- Min Y, Fan J, Xu Q, Zhang S, J. Alloy. Compd., 609, 46 (2014)
- McBride RA, Kelly JM, McCormack DE, J. Mater. Chem., 13, 1196 (2003)
- Li Y, Tang L, Peng S, Li Z, Lu G, CrystEngComm., 14, 6974 (2012)
- Tai GA, Zhou JX, Guo WL, Nanotechnology, 21, 175601 (2010)
- Jing DW, Guo LJ, J. Phys. Chem. B, 110(23), 11139 (2006)
- Wang W, Zhu W, Xu H, J. Phys. Chem., 112, 16754 (2008)
- Deshpande A, Shah P, Gholap RS, Gupta NM, J. Colloid Interface Sci., 333(1), 263 (2009)
- Xie SL, Lu XH, Zhai T, Gan JY, Li W, Xu M, Yu MH, Zhang YM, Tong YX, Langmuir, 28(28), 10558 (2012)
- Yu K, Yang SG, He H, Sun C, Gu CG, Ju YM, J. Phys. Chem. A, 113(37), 10024 (2009)
- Zhuang JD, Dai WX, Tian QF, Li ZH, Xie LY, Wang JX, Liu P, Shi XC, Wang DH, Langmuir, 26(12), 9686 (2010)
- An TC, An JB, Yang H, Li GY, Feng HX, Nie XP, J. Hazard. Mater., 197, 229 (2011)
- Dong R, Tian B, Zhang J, Wang T, Tao Q, Bao S, Yang F, Zeng C, Catal. Commun., 38, 16 (2013)
- Wu TX, Liu GM, Zhao JC, Hidaka H, Serpone N, J. Phys. Chem. B, 102(30), 5845 (1998)
- Watanabe T, Takizawa T, Honda K, J. Phys. Chem., 81, 1845 (1977)
- Khan UA, Liu J, Pan J, Ma H, Zuo S, Yu Y, Ahmad A, Li B, Mater. Sci. Semicond. Process, 83, 201 (2018)
- Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253 (2009)
- Li W, Li D, Meng S, Chen W, Fu X, Shao Y, Environ. Sci. Technol., 45, 2987 (2011)
- Xing CJ, Zhang YJ, Yan W, Guo LJ, Int. J. Hydrog. Energy, 31(14), 2018 (2006)
- Cui WQ, An WJ, Liu L, Hu JS, Liang YH, Appl. Surf. Sci., 319, 298 (2014)
- Yang GR, Zhang Q, Chang W, Yan W, J. Alloy. Compd., 580, 29 (2013)
- Chan CC, Chang CC, Hsu CH, Weng YC, Chen KY, Lin HH, Huang WC, Cheng SF, Int. J. Hydrog. Energy, 39(4), 1630 (2014)
- Liu G, Niu P, Sun C, Smith SC, Chen Z, Lu GQ, Cheng HM, J. Am. Ceram. Soc., 132, 11642 (2010)
- Kozlova EA, Markovskaya DV, Cherepanova SV, Saraev AA, Gerasimov EY, Perevalov TV, Kaichev VV, Parmon VN, Int. J. Hydrog. Energy, 39(33), 18758 (2014)