화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.3, 155-159, March, 2019
습식 화학적 식각 방법에 의한 시간에 따른 GaAs(100) 단결정 웨이퍼에서의 마이크로 구멍의 제작 및 분석
Fabrication and Time-Dependent Analysis of Micro-Hole in GaAs(100) Single Crystal Wafer Using Wet Chemical Etching Method
E-mail:
초록
Surface plasmon resonance is the resonant oscillation of conduction electrons at the interface between negative and positive permittivity material stimulated by incident light. In particular, when light transmits through the metallic microhole structures, it shows an increased intensity of light. Thus, it is used to increase the efficiency of devices such as LEDs, solar cells, and sensors. There are various methods to make micro-hole structures. In this experiment, micro holes are formed using a wet chemical etching method, which is inexpensive and can be mass processed. The shape of the holes depends on crystal facets, temperature, the concentration of the etchant solution, and etching time. We select a GaAs(100) single crystal wafer in this experiment and satisfactory results are obtained under the ratio of etchant solution with H2SO4:H2O2:H2O = 1:5:5. The morphology of micro holes according to the temperature and time is observed using field emission - scanning electron microscopy (FE-SEM). The etching mechanism at the corners and sidewalls is explained through the configuration of atoms.
  1. Menard E, Meitl MA, Sun YG, Park JU, Shir DJL, Nam YS, Jeon S, Rogers JA, Chem. Rev., 107(4), 1117 (2007)
  2. Wilson DL, Martin R, Hong S, Golomb MC, Mirkin CA, Kaplan DL, PNAS, 98, 13660 (2001)
  3. Choi D, Yu HK, Jang SG, Yang S, J. Am. Ceram. Soc., 126, 7019 (2004)
  4. Fenwick O, Bozec L, Credgington D, Hammiche A, Lazzerini GM, Silberberg YR, Cacialli F, Nat. Nanotechnol., 4(10), 664 (2009)
  5. Withers F, Bointon TH, Dubois M, Russo S, Craciun MF, Nano Lett., 11, 3912 (2011)
  6. Lu Y, Chen SC, Nanotechnology, 14, 505 (2003)
  7. Bahk Y, Kang BJ, Kim YS, Kim J, Kim WT, Kim TY, Kang T, Rhie J, Han S, Park CH, Rotermund F, Kim DS, Phys. Rev. Lett., 115, 125501 (2015)
  8. Najiminaini M, Vasefi F, Kaminska B, Carson JJL, Appl. Phys. Lett., 100, 043105 (2012)
  9. Genet C, Ebbesen TW, Nature, 445, 39 (2007)
  10. Lesuffleur A, Im H, Lindquist NC, Oh S, Appl. Phys. Lett., 90, 243110 (2007)
  11. Parsons J, Hendry E, Burrows CP, Auquie B, Sambles JR, Barnes WL, Phys. Rev. B, 79, 073412 (2009)
  12. Sannomiya T, Scholder O, Jefimovs K, Hafner C, Dahlin AB, Small, 7, 1653 (2011)
  13. Nakayama K, Tanabe K, Atwater HA, Appl. Phys. Lett., 93, 121904 (2008)
  14. Iida S, Sugimoto T, Suzuki S, Kishimoto S, Yagi Y, J. Cryst. Growth, 72, 51 (1985)
  15. Gamo K, Ochiai Y, Namba S, Jpn. J. Appl. Phys., 21, L792 (1982)
  16. Ochiai Y, Gamo K, Namba S, J. Vac. Sci. Technol. B, 3, 67 (1985)
  17. Hilton KP, Woodward J, Electron. Lett., 21, 962 (1985)
  18. Young RJ, Cleaver JRA, Ahmed H, J. Vac. Sci. Technol. B, 11, 234 (1993)
  19. Sugimoto Y, Taneya M, Hidaka H, Akita K, J. Appl. Phys., 68, 2392 (1990)
  20. Miyauchi E, Arimoto H, Hashimoto H, Utsumi T, J. Vac. Sci. Technol. B, 1, 1113 (1983)
  21. Cheung R, Thoms S, Beamont SP, Doughty G, Law V, Wilkinson CDW, Electron. Lett., 23, 857 (1987)
  22. Vossen JL, Kern W, Thin film processes, p.403, Academic press, London (1978).
  23. Kim JS, Master Thesis (in Korean), p. 1-4, Korea Maritime and Ocean University, Busan (2004).
  24. Sze SM, Physics of Semiconductor Devices, John Wiley, New York (2012).
  25. Lee HY, Master Thesis (in Korean), p. 59-60, Korea Maritime and Ocean University, Busan (2018).