화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.3, 196-203, March, 2019
산화아연 나노막대가 내장된 아산화구리 박막 구조를 이용한 산화물 광양극 제작 및 광전기화학적 특성
Fabrication and Photoelectrochemical Properties of an Oxide Photoanode with Zinc Oxide Nanorod Array Embedded in Cuprous Oxide Thin Film
E-mail:
We report on the fabrication and characterization of an oxide photoanode with a zinc oxide (ZnO) nanorod array embedded in cuprous oxide (Cu2O) thin film, namely a ZnO/Cu2O oxide p-n heterostructure photoanode, for enhanced efficiency of visible light driven photoelectrochemical (PEC) water splitting. A vertically oriented n-type ZnO nanorod array is first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type Cu2O thin film is directly electrodeposited onto the vertically oriented ZnO nanorod array to form an oxide p-n heterostructure. The introduction of Cu2O layer produces a noticeable enhancement in the visible light absorption. From the observed PEC current density versus voltage (J-V) behavior under visible light illumination, the photoconversion efficiency of this ZnO/Cu2O p-n heterostructure photoanode is found to reach 0.39 %, which is seven times that of a pristine ZnO nanorod photoanode. In particular, a significant PEC performance is observed even at an applied bias of 0 V vs Hg/Hg2Cl2, which makes the device self-powered. The observed improvement in the PEC performance is attributed to some synergistic effect of the pn bilayer heterostructure on the formation of a built-in potential including the light absorption and separation processes of photoinduced charge carriers, which provides a new avenue for preparing efficient photoanodes for PEC water splitting.
  1. Winter CJ, Int. J. Hydrog. Energy, 34(14), S1 (2009)
  2. Steele BCH, Nature, 400, 619 (1999)
  3. Kamat PV, J. Phys. Chem. C, 111, 2834 (2007)
  4. Wei Y, Ke L, Kong J, Liu H, Jiao Z, Lu X, Du H, Sun XW, Nanotechnology, 23, 235401 (2012)
  5. Fujishima A, Honda K, Nature, 238, 37 (1972)
  6. Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
  7. Kang Z, Yan X, Wang Y, Bai Z, Liu Y, Zhang Z, Lin P, Zhang X, Yuan H, Zhang X, Zhang Y, Sci. Rep., 5, 7882 (2015)
  8. Lin P, Chen X, Yan X, Zhang Z, Yuan H, Li P, Zhang Y, Zhang Y, Nano Res., 7, 860 (2014)
  9. Deo M, Shinde D, Yengantiwar A, Jog J, Hannoyer B, Sauvage X, More M, Ogale S, J. Mater. Chem., 22, 17055 (2012)
  10. Jiang T, Xie T, Chen L, Fu Z, Wang D, Nanoscale, 5, 2938 (2013)
  11. Ren ST, Fan GH, Liang ML, Wang Q, Zhao GL, J. Appl. Phys., 115, 064301 (2014)
  12. Park JH, Kim HJ, Kim DJ, Korean J. Mater. Res., 28(4), 214 (2018)
  13. Zhang Z, Wang P, J. Mater. Chem., 22, 2456 (2012)
  14. Liu Y, Gu Y, Yan X, Kang Z, Lu S, Sun Y, Zhang Y, Nano Res., 8, 2891 (2015)
  15. Moniz SJA, Shevin SA, Martin DJ, Guo ZX, Tang J, Energy Environ. Sci., 8, 731 (2015)
  16. Wang D, Zhang X, Sun P, Lu S, Wang L, Wang C, Liu Y, Electrochimica Acta, 130, 290 (2014)
  17. Kim S, Kim H, Hong SK, Kim D, Korean J. Mater. Res., 26(11), 604 (2016)
  18. Liu L, Hong K, Hu T, Xu M, J. Alloy. Compd., 511, 195 (2012)
  19. de Jongh PE, Vanmaekelbergh D, Kelly JJ, Chem. Mater., 11, 3512 (1999)
  20. Hisatomi T, Kubota J, Domen K, Chem. Soc. Rev., 43, 7520 (2014)
  21. Sawyer DT, Sobkowiak A, Roberts J, p. 196, Electrochemistry for Chemists, John Wiley & Sons, New York (1995).