- Previous Article
- Next Article
- Table of Contents
Korean Journal of Materials Research, Vol.29, No.3, 196-203, March, 2019
산화아연 나노막대가 내장된 아산화구리 박막 구조를 이용한 산화물 광양극 제작 및 광전기화학적 특성
Fabrication and Photoelectrochemical Properties of an Oxide Photoanode with Zinc Oxide Nanorod Array Embedded in Cuprous Oxide Thin Film
E-mail:
We report on the fabrication and characterization of an oxide photoanode with a zinc oxide (ZnO) nanorod array embedded in cuprous oxide (Cu2O) thin film, namely a ZnO/Cu2O oxide p-n heterostructure photoanode, for enhanced efficiency of visible light driven photoelectrochemical (PEC) water splitting. A vertically oriented n-type ZnO nanorod array is first prepared on an indium-tin-oxide-coated glass substrate via a seed-mediated hydrothermal synthesis method and then a p-type Cu2O thin film is directly electrodeposited onto the vertically oriented ZnO nanorod array to form an oxide p-n heterostructure. The introduction of Cu2O layer produces a noticeable enhancement in the visible light absorption. From the observed PEC current density versus voltage (J-V) behavior under visible light illumination, the photoconversion efficiency of this ZnO/Cu2O p-n heterostructure photoanode is found to reach 0.39 %, which is seven times that of a pristine ZnO nanorod photoanode. In particular, a significant PEC performance is observed even at an applied bias of 0 V vs Hg/Hg2Cl2, which makes the device self-powered. The observed improvement in the PEC performance is attributed to some synergistic effect of the pn bilayer heterostructure on the formation of a built-in potential including the light absorption and separation processes of photoinduced charge carriers, which provides a new avenue for preparing efficient photoanodes for PEC water splitting.
Keywords:oxide heterostructure;zinc oxide;cuprous oxide;photoanode;photoelectrochemical water splitting
- Winter CJ, Int. J. Hydrog. Energy, 34(14), S1 (2009)
- Steele BCH, Nature, 400, 619 (1999)
- Kamat PV, J. Phys. Chem. C, 111, 2834 (2007)
- Wei Y, Ke L, Kong J, Liu H, Jiao Z, Lu X, Du H, Sun XW, Nanotechnology, 23, 235401 (2012)
- Fujishima A, Honda K, Nature, 238, 37 (1972)
- Chen X, Mao SS, Chem. Rev., 107(7), 2891 (2007)
- Kang Z, Yan X, Wang Y, Bai Z, Liu Y, Zhang Z, Lin P, Zhang X, Yuan H, Zhang X, Zhang Y, Sci. Rep., 5, 7882 (2015)
- Lin P, Chen X, Yan X, Zhang Z, Yuan H, Li P, Zhang Y, Zhang Y, Nano Res., 7, 860 (2014)
- Deo M, Shinde D, Yengantiwar A, Jog J, Hannoyer B, Sauvage X, More M, Ogale S, J. Mater. Chem., 22, 17055 (2012)
- Jiang T, Xie T, Chen L, Fu Z, Wang D, Nanoscale, 5, 2938 (2013)
- Ren ST, Fan GH, Liang ML, Wang Q, Zhao GL, J. Appl. Phys., 115, 064301 (2014)
- Park JH, Kim HJ, Kim DJ, Korean J. Mater. Res., 28(4), 214 (2018)
- Zhang Z, Wang P, J. Mater. Chem., 22, 2456 (2012)
- Liu Y, Gu Y, Yan X, Kang Z, Lu S, Sun Y, Zhang Y, Nano Res., 8, 2891 (2015)
- Moniz SJA, Shevin SA, Martin DJ, Guo ZX, Tang J, Energy Environ. Sci., 8, 731 (2015)
- Wang D, Zhang X, Sun P, Lu S, Wang L, Wang C, Liu Y, Electrochimica Acta, 130, 290 (2014)
- Kim S, Kim H, Hong SK, Kim D, Korean J. Mater. Res., 26(11), 604 (2016)
- Liu L, Hong K, Hu T, Xu M, J. Alloy. Compd., 511, 195 (2012)
- de Jongh PE, Vanmaekelbergh D, Kelly JJ, Chem. Mater., 11, 3512 (1999)
- Hisatomi T, Kubota J, Domen K, Chem. Soc. Rev., 43, 7520 (2014)
- Sawyer DT, Sobkowiak A, Roberts J, p. 196, Electrochemistry for Chemists, John Wiley & Sons, New York (1995).