화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.73, 198-204, May, 2019
Nanosized and tunable design of biosilica particles using novel silica-forming peptide-modified chimeric ferritin templates
E-mail:,
Biosilica materials can be generated by biomolecules under physiological or mild/ambient conditions. However, nanosized and tunable design method of biosilica particles has not yet been set up. Here, Kps, a silica forming peptide (KPSHHHHHTGAN) was introduced to N-terminus of ferritin via protein fusion method to generate new Kps-modified ferritin (Kps-Fn) for reliable formation of biosilica particles. Then, novel chimeric Kps-Fn was designed for controllable generation of biosilica nanoparticles (NPs). By changing the ratios of Kps-Fn and Fn subunits in the chimeric Kps-Fn templates, desired size of biosilica NPs (100?500 nm) can be achieved. The low surface density of Kps on the chimeric template could lead to the small-sized biosilica NPs with the increased surface area/amount. The biosilica NPs developed here showed better DNA adsorption/elution performance than the commercially available silica NPs. This work is a new way to generate desirable biosilica NPs, which can be applied for the design of various biohybrid nanomaterials.
  1. Jo BH, Seo JH, Yang YJ, Baek K, Choi YS, Pack SP, Oh SH, Cha HJ, ACS Catal., 4, 4332 (2014)
  2. Ki MR, Yeo KB, Pack SP, Bioprocess Biosyst. Eng., 36, 643 (2013)
  3. Min KH, Son RG, Ki MR, Choi YS, Pack SP, Chemosphere, 143, 128 (2016)
  4. Park KS, Ki MR, Yeo KS, Choi JH, Pack SP, Biochem. Eng. J., 128, 112 (2017)
  5. Ryu YH, Yeo KB, Ki MR, Kim YJ, Pack SP, Biochem. Eng. J., 105, 144 (2016)
  6. Croissant JG, Fatieiev Y, Almalik A, Khashab NM, Adv. Healthc. Mater., 7 (2018)
  7. Xu ZG, Ma XQ, Gao YE, Hou ML, Xue P, Li CM, Kang YJ, Mater. Chem. Front., 1, 1257 (2017)
  8. Kane AL, Al-Shayeb B, Holec PV, Rajan S, Le Mieux NE, Heinsch SC, Psarska S, Aukema KG, Sarkar CA, Nater EA, Gralnick JA, Plos One, 11 (2016)
  9. Peng F, Su YY, Zhong YL, Fan CH, Lee ST, He Y, Accounts Chem. Res., 47, 612 (2014)
  10. Rahman IA, Padavettan V, J. Nanomater, 2012, 15 (2012)
  11. Kozlecki T, Polowczyk I, Bastrzyk A, Sawinski W, J. Nanopart, 2016, 9 (2016)
  12. Lin CH, Chang JH, Yeh YQ, Wu SH, Liu YH, Mou CY, Nanoscale, 7, 9614 (2015)
  13. Shekar S, Sander M, Riehl RC, Smith AJ, Braumann A, Kraft M, Chem. Eng. Sci., 70, 54 (2012)
  14. Patwardhan SV, Chem. Commun., 47, 7567 (2011)
  15. Kroger N, Deutzmann R, Sumper M, Science, 286, 1129 (1999)
  16. Lechner CC, Becker CFW, Mar. Drugs, 13, 5297 (2015)
  17. Cha JN, Shimizu K, Zhou Y, Christiansen SC, Chmelka BF, Stucky GD, Morse DE, Proc. Natl. Acad. Sci., 96, 361 (1999)
  18. Povarova NV, Markina NM, Baranov MS, Barinov NA, Klinov DV, Kozhemyako VB, Lukyanov KA, Biochem. Biophys. Res. Commun., 495(2), 2066 (2018)
  19. Richthammer P, Bormel M, Brunner E, van Pee KH, Chembiochem, 12, 1362 (2011)
  20. Ki MR, Jang EK, Pack SP, Process Biochem., 49(1), 95 (2014)
  21. Wang S, Xue J, Zhao Y, Du M, Deng L, Xu H, Lu JR, Soft Matter, 10, 7623 (2014)
  22. Knecht MR, Wright DW, Chem. Commun., 3038 (2003).
  23. Song IW, Park H, Park JH, Kim H, Kim SH, Yi S, Jaworski J, Sang BI, Sci. Rep., 7 (2017)
  24. Yeo KB, Ki MR, Park KS, Pack SP, Process Biochem., 58, 193 (2017)
  25. Naik RR, Brott LL, Clarson SJ, Stone MO, J. Nanosci. Nanotechnol., 2, 95 (2002)
  26. Han W, MacEwan S, Chilkoti A, Lopez GP, Nanoscale, 7, 12038 (2015)
  27. Kim TG, An GS, Han JS, Hur JU, Park BG, Choi SC, J. Korean Ceram. Soc., 54, 49 (2017)
  28. Xun L, Zhang L, Xing F, Lin H, Microporous Mesoporous Mater., 225, 238 (2016)
  29. Ki MR, Nguyen TKM, Jun HS, Pack SP, Process Biochem., 68, 182 (2018)
  30. Gao J, Maruyama A, Biohybrid Materials, Springer Berlin Heidelberg, Berlin, Heidelberg pp.1-5 2014.
  31. Kramer RM, Li C, Carter DC, Stone MO, Naik RR, J. Am. Chem. Soc., 126(41), 13282 (2004)
  32. Meldrum FC, Wade VJ, Nimmo DL, Heywood BR, Mann S, Nature, 349, 684 (1991)
  33. Ueno T, Suzuki M, Goto T, Matsumoto T, Nagayama K, Watanabe Y, Angew. Chem.-Int. Edit., 43, 2527 (2004)
  34. Lin X, Xie J, Niu G, Zhang F, Gao H, Yang M, Quan Q, Aronova MA, Zhang G, Lee S, Leapman R, Chen X, Nano Lett., 11, 814 (2011)
  35. Uchida M, Flenniken ML, Allen M, Willits DA, Crowley BE, Brumfield S, Willis AF, Jackiw L, Jutila M, Young MJ, Douglas T, J. Am. Chem. Soc., 128(51), 16626 (2006)
  36. Zhen Z, Tang W, Chen H, Lin X, Todd T, Wang G, Cowger T, Chen X, Xie J, ACS Nano, 7, 4830 (2013)
  37. Blazkova I, Nguyen HV, Dostalova S, Kopel P, Stanisavljevic M, Vaculovicova M, Stiborova M, Eckschlager T, Kizek R, Adam V, Int. J. Mol. Sci., 14(7), 13391 (2013)
  38. Clergeaud G, Genc R, Ortiz M, O'Sullivan CK, Langmuir, 29(49), 15405 (2013)
  39. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  40. Wieneke R, Bernecker A, Riedel R, Sumper M, Steinem C, Geyer A, Org. Biomol. Chem., 9, 5482 (2011)
  41. Strickland JDH, Parsons TR, A Practical Handbook of Seawater Analysis, Fisheries Research Board of Canada, 1972.
  42. Li X, Zhang JX, Gu HC, Langmuir, 27(10), 6099 (2011)
  43. Lambert EM, Viravaidya C, Li M, Mann S, Angew. Chem.-Int. Edit., 49, 4100 (2010)
  44. Yamada H, Urata C, Ujiie H, Yamauchi Y, Kuroda K, Nanoscale, 5, 6145 (2013)
  45. Kim M, Rho Y, Jin KS, Ahn B, Jung S, Kim H, Ree M, Biomacromolecules, 12(5), 1629 (2011)