Journal of Industrial and Engineering Chemistry, Vol.73, 241-247, May, 2019
Optimization of the preparation conditions for pitch based anode to enhance the electrochemical properties of LIBs
The anode of a lithium ion battery was prepared by the thermal treatment of PFO (pyrolysis fuel oil) utilizing the following three steps: PFO → pitch → coke → anode. The PFO-based pitch with a high softening point exhibited high discharge capacity and Coulombic efficiency because of turbostratic disorder within the disordered structures. A two-step intermediate heating process during the (pitch → coke) reaction induced the remaining relatively light components to participate in condensation/cross-linking reactions during anode formation (coke → anode). The intermediate heating provided a high discharge capacity and a first-cycle Coulombic efficiency based on a well-ordered and suitable micropore structure for lithium storage sites.
Keywords:PFO-based pitch;Optimum thermal conditions;Discharge capacity;Capacity retention;Lithium ion battery
- Peters JF, Baumann M, Zimmermann B, Braun J, Weil M, Renew. Sust. Energ. Rev., 67, 491 (2017)
- Doughty DH, Butler PC, Akhil AA, Clark NH, Boyes JD, Electrochem. Soc. Interface, 4, 9 (2010)
- Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C, J. Power Sources, 257, 421 (2014)
- Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D, J. Mater. Chem., 21, 9938 (2011)
- Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
- Farooq U, Doh CH, Pervez SA, Kim DH, Lee SH, Saleem M, Sim SJ, Choi JH, Carbon Lett., 17, 39 (2016)
- Endo M, Kim C, Nishimura K, Fujino T, Miyashita K, Carbon, 38, 183 (2000)
- Bai BC, Kim JG, Kim JH, Lee CW, Lee YS, Im JS, Carbon Lett., 25(1), 78 (2018)
- Shin HK, Seo MK, Bang YH, Park SJ, Carbon Lett., 19, 104 (2016)
- Kim JD, Roh JS, Kim MS, Carbon Lett., 21, 51 (2017)
- Jung MJ, Jung JY, Lee D, Lee YS, J. Ind. Eng. Chem., 22, 70 (2015)
- Wagner MH, Jager H, Letizia I, Wilhelmi G, Fuel, 67, 792 (1988)
- Blanco C, Santamaria R, Bermejo J, Menendez R, Carbon, 38, 1043 (2000)
- Park MS, Cho S, Jeong E, Lee YS, J. Ind. Eng. Chem., 23, 27 (2015)
- Kim JH, Jung MJ, Kim MJ, Lee YS, J. Ind. Eng. Chem., 61, 368 (2017)
- Granda M, Casal E, Bermejo J, Menendez R, Carbon, 39, 483 (2001)
- Perez M, Granda M, Garcia R, Santamaria R, Romero E, Menendez R, J. Anal. Appl. Pyrolysis, 63, 223 (2002)
- Mochida I, Ku CH, Korai Y, Carbon, 39, 399 (2001)
- Concheso R, Santamaria M, Granda R, Menendez JM, Jimenez-Mateos R, Alcantara P, Lavela JL, Elctrochim. Acta, 50, 1225 (2005)
- Wang YX, Chou SL, Kim JH, Liu HK, Dou SX, Electrochim. Acta, 93, 213 (2013)
- Zhao PY, Tang JJ, Wang CY, J. Solid State Electrochem., 21, 555 (2017)
- Kim JG, Liu F, Lee CW, Lee YS, Im JS, Solid State Sci., 34, 38 (2014)
- Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)
- Zander M, Collin G, Fuel, 72, 1281 (1993)
- Blanco CG, Dominguez A, Iglesias MJ, Guillen MD, Fuel, 73, 510 (1994)
- Marsh H, Latham CS, Gray EM, Carbon, 23, 555 (1985)
- Han YJ, Kim J, Yeo JS, An JC, Hong IP, Nakabayashi K, Miyawaki J, Jung JD, Yoon SH, Carbon, 94, 432 (2015)
- Flandrois S, Simon B, Carbon, 37, 165 (1999)
- Xing WB, Dahn JR, J. Electrochem. Soc., 144(4), 1195 (1997)
- Fujimoto H, Mabuchi A, Tokumitsu K, Kasuh T, J. Power Sources, 54, 440 (1995)
- Rutherford SW, Nguyen C, Coons JE, Do DD, Langmuir, 19(20), 8335 (2003)
- Morishige K, Tateishi N, J. Chem. Phys., 119(4), 2301 (2003)
- Han YJ, Chung DB, Nakabayashi K, Chung JD, Miyawaki J, Yoon SH, Electrochim. Acta, 213, 432 (2016)
- Gale TK, Fletcher TH, Bartholomew CH, Energy Fuels, 9(3), 513 (1995)
- Tai FC, Wei C, Chang SH, Chen WS, J. Raman Spectrosc., 41(9), 933 (2010)