화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.73, 241-247, May, 2019
Optimization of the preparation conditions for pitch based anode to enhance the electrochemical properties of LIBs
The anode of a lithium ion battery was prepared by the thermal treatment of PFO (pyrolysis fuel oil) utilizing the following three steps: PFO → pitch → coke → anode. The PFO-based pitch with a high softening point exhibited high discharge capacity and Coulombic efficiency because of turbostratic disorder within the disordered structures. A two-step intermediate heating process during the (pitch → coke) reaction induced the remaining relatively light components to participate in condensation/cross-linking reactions during anode formation (coke → anode). The intermediate heating provided a high discharge capacity and a first-cycle Coulombic efficiency based on a well-ordered and suitable micropore structure for lithium storage sites.
  1. Peters JF, Baumann M, Zimmermann B, Braun J, Weil M, Renew. Sust. Energ. Rev., 67, 491 (2017)
  2. Doughty DH, Butler PC, Akhil AA, Clark NH, Boyes JD, Electrochem. Soc. Interface, 4, 9 (2010)
  3. Goriparti S, Miele E, De Angelis F, Di Fabrizio E, Zaccaria RP, Capiglia C, J. Power Sources, 257, 421 (2014)
  4. Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D, J. Mater. Chem., 21, 9938 (2011)
  5. Scrosati B, Garche J, J. Power Sources, 195(9), 2419 (2010)
  6. Farooq U, Doh CH, Pervez SA, Kim DH, Lee SH, Saleem M, Sim SJ, Choi JH, Carbon Lett., 17, 39 (2016)
  7. Endo M, Kim C, Nishimura K, Fujino T, Miyashita K, Carbon, 38, 183 (2000)
  8. Bai BC, Kim JG, Kim JH, Lee CW, Lee YS, Im JS, Carbon Lett., 25(1), 78 (2018)
  9. Shin HK, Seo MK, Bang YH, Park SJ, Carbon Lett., 19, 104 (2016)
  10. Kim JD, Roh JS, Kim MS, Carbon Lett., 21, 51 (2017)
  11. Jung MJ, Jung JY, Lee D, Lee YS, J. Ind. Eng. Chem., 22, 70 (2015)
  12. Wagner MH, Jager H, Letizia I, Wilhelmi G, Fuel, 67, 792 (1988)
  13. Blanco C, Santamaria R, Bermejo J, Menendez R, Carbon, 38, 1043 (2000)
  14. Park MS, Cho S, Jeong E, Lee YS, J. Ind. Eng. Chem., 23, 27 (2015)
  15. Kim JH, Jung MJ, Kim MJ, Lee YS, J. Ind. Eng. Chem., 61, 368 (2017)
  16. Granda M, Casal E, Bermejo J, Menendez R, Carbon, 39, 483 (2001)
  17. Perez M, Granda M, Garcia R, Santamaria R, Romero E, Menendez R, J. Anal. Appl. Pyrolysis, 63, 223 (2002)
  18. Mochida I, Ku CH, Korai Y, Carbon, 39, 399 (2001)
  19. Concheso R, Santamaria M, Granda R, Menendez JM, Jimenez-Mateos R, Alcantara P, Lavela JL, Elctrochim. Acta, 50, 1225 (2005)
  20. Wang YX, Chou SL, Kim JH, Liu HK, Dou SX, Electrochim. Acta, 93, 213 (2013)
  21. Zhao PY, Tang JJ, Wang CY, J. Solid State Electrochem., 21, 555 (2017)
  22. Kim JG, Liu F, Lee CW, Lee YS, Im JS, Solid State Sci., 34, 38 (2014)
  23. Kim JG, Kim JH, Song BJ, Lee CW, Im JS, J. Ind. Eng. Chem., 36, 293 (2016)
  24. Zander M, Collin G, Fuel, 72, 1281 (1993)
  25. Blanco CG, Dominguez A, Iglesias MJ, Guillen MD, Fuel, 73, 510 (1994)
  26. Marsh H, Latham CS, Gray EM, Carbon, 23, 555 (1985)
  27. Han YJ, Kim J, Yeo JS, An JC, Hong IP, Nakabayashi K, Miyawaki J, Jung JD, Yoon SH, Carbon, 94, 432 (2015)
  28. Flandrois S, Simon B, Carbon, 37, 165 (1999)
  29. Xing WB, Dahn JR, J. Electrochem. Soc., 144(4), 1195 (1997)
  30. Fujimoto H, Mabuchi A, Tokumitsu K, Kasuh T, J. Power Sources, 54, 440 (1995)
  31. Rutherford SW, Nguyen C, Coons JE, Do DD, Langmuir, 19(20), 8335 (2003)
  32. Morishige K, Tateishi N, J. Chem. Phys., 119(4), 2301 (2003)
  33. Han YJ, Chung DB, Nakabayashi K, Chung JD, Miyawaki J, Yoon SH, Electrochim. Acta, 213, 432 (2016)
  34. Gale TK, Fletcher TH, Bartholomew CH, Energy Fuels, 9(3), 513 (1995)
  35. Tai FC, Wei C, Chang SH, Chen WS, J. Raman Spectrosc., 41(9), 933 (2010)