화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.73, 286-296, May, 2019
Computational fluid dynamics and tar formation in a low-temperature carbonization furnace for the production of carbon fibers
E-mail:
A three-dimensional computational fluid dynamics (CFD) model with new permeability and off-gas emission equations was developed in a four-zone low-temperature furnace (LTF) for carbon fiber carbonization. Four performance criteria (residence time, dead-volume ratio, tow temperature standard deviation, and tar formation area) were proposed to identify the optimal ratio between the two N2 flow rates introduced into the front and rear of LTF. A higher N2 flow rate at the front rather than at the rear was preferred to reduce tar formation. The tar formation area calculated from carbon activity provides useful guideline for determining optimal LTF design and operating conditions.
  1. Ko SH, Choi JE, Lee CW, Jeon YP, J. Ind. Eng. Chem., 54, 252 (2017)
  2. Das S, Warren J, West D, Schexnayder SM, Global Carbon Fiber Composites Supply Chain Competitiveness Analysis, NREL/TP-6A50-66071, USA, 2016.
  3. Ji MX, Wang CG, Bai YJ, Yu MJ, Wang YX, Polym. Bull., 59(4), 527 (2007)
  4. Khayyam H, Naebe M, Bab-Hadiashar A, Jamshidi F, Li QX, Atkiss S, Buckmaster D, Fox B, Appl. Energy, 158, 643 (2015)
  5. Rahaman MSA, Ismail AF, Mustafa A, Polym. Degrad. Stabil., 92, 1421 (2007)
  6. Khayyam H, Fakhrhoseini SM, Church JS, Milani AS, Bab-Hadiashar A, Jazar RN, Naebe M, Appl. Therm. Eng., 125, 1539 (2017)
  7. Morgan P, Carbon Fibers and Their Composites, Talor & Francis, Boca Raton, 2005.
  8. Yusof N, Ismail AF, J. Anal. Appl. Pyrolysis, 93, 1 (2012)
  9. Heo GY, Yoo YJ, Park SJ, J. Ind. Eng. Chem., 19(3), 1040 (2013)
  10. Pham HH, Lim YI, Cho CH, Bang YH, Chem. Eng. Res. Des., 128, 192 (2017)
  11. Fiedle AK, Fitzer E, Rozploch F, Chemische I, Carbon, 11, 426 (1973)
  12. Lee TS, Witting P, Computational Fluid Dynamics (CFD) Analysis For Off-Gas Mixing and Ventilation Inside Carbonization Furnace During PAN-Based Carbon Fiber Manufacturing, 2016.
  13. Baird T, Fryer JR, Grant B, Carbon, 12, 591 (1974)
  14. Presland AEB, Walker PL, Carbon, 7, 1 (1969)
  15. Manafzadeh H, Sadrameli SM, Towfighi J, Appl. Therm. Eng., 23, 1347 (2003)
  16. Lee TS, Witting P, Kinetic Model of Stabilized PAN Fiber Mass Loss During Carbonization, White Paper, Harper International, New York, 2017.
  17. Lan X, Gao J, Xu C, Zhang H, Chem. Eng. Res. Des., 85(A12), 1565 (2007)
  18. Han Y, He L, Luo X, Lu Y, Shi K, Chen J, Huang X, J. Ind. Eng. Chem., 53, 37 (2017)
  19. Khan MJH, Hussain MA, Mansourpour Z, Mostoufi N, Ghasem NM, Abdullah EC, J. Ind. Eng. Chem., 20(6), 3919 (2014)
  20. Pham HH, Lim YI, Han S, Lim B, Ko HS, Korean J. Chem. Eng., 35, 1 (2018)
  21. Nazar ARS, Banisharifdehkordi F, Ahmadzadeh S, Chem. Eng. Technol., 39(2), 311 (2016)
  22. Wang YZ, Yoshiba F, Kawase M, Watanabe T, Int. J. Hydrog. Energy, 34(9), 3885 (2009)
  23. Schluclzner C, Subotic V, Lawlor V, Hochenauer C, Int. J. Hydrog. Energy, 40(34), 10943 (2015)
  24. Liu J, Wang PH, Li RY, J. Appl. Polym. Sci., 52(7), 945 (1994)
  25. Tomadakis MM, Robertson TJ, J. Comput. Chem., 39, 163 (2005)
  26. Hameed N, Sharp J, Nunna S, Creighton C, Magniez K, Jyotishkumar P, Salim NV, Fox B, Polym. Degrad. Stabil., 128, 39 (2016)
  27. Menter FR, AIAA J., 32, 1598 (1994)
  28. Hosseini SH, Shojaee S, Ahmadi G, Zivdar M, J. Ind. Eng. Chem., 18(4), 1465 (2012)
  29. Chui EH, Raithby GD, Numer. Heat Transf. B-Fundam., 23, 269 (1993)
  30. Marcuzzo JS, Otani C, Polidoro HA, Otani S, Mater. Res., 16, 137 (2013)