Polymer(Korea), Vol.43, No.2, 181-187, March, 2019
Poly(2-hydroxyethyl methacrylate) 기반 공중합체 하이드로젤의 pH 의존 팽윤 거동 제어 연구
pH Dependent Swelling Behavior of Poly(2-hydroxyethyl methacrylate)-Based Copolymer Hydrogels
E-mail:
초록
하이드로젤은 고도로 수화된 고분자 네트워크로서, 외부 자극에 따라 다른 팽윤 거동을 보이기 때문에 센서나 액츄에이터로 이용될 수 있다. 본 논문에서 우리는 poly(2-hydroxyethyl methacrylate)(PHEMA) 기반 공중합체의 pH 의존 팽윤 거동 제어 연구를 수행하였다. 먼저, 공중합체가 아닌 순수한 PHEMA는 매우 약한 pH 의존 팽윤 거동을 보임을 확인하였다. 이 PHEMA에 카복실기를 갖는 acrylic acid를 공중합할 경우, pH가 증가할수록 팽윤비가 크게 증가하였다. 이에 반해, PHEMA에 다이메틸아민기를 갖는 (2-dimethylamino)ethyl methacrylate)를 공중합할 경우, pH가 증가할수록 팽윤비가 감소하는 거동을 보였다. 이와 같이, 작용기를 적절하게 선택하여 PHEMA 고분자의 pH 의존 팽윤 거동 특성을 제어할 수 있다. 또한 더 큰 pH 의존 팽윤 거동 특성을 얻기 위해, PHEMA 중합시 개시제, 가교제 조성이 팽윤 거동에 미치는 영향에 대해 관찰하였다. 본 연구는 하이드로젤을 기반으로 한 센서나 액츄에이터와 같은 응용 분야에 유용한 정보를 제공할 수 있을 것이다.
A hydrogel is a highly hydrated polymer network which can be used as a sensor and an actuator due to its different swelling behavior responsive to external stimuli. In this report, we discuss the pH-dependent swelling behavior of PHEMA-based copolymer hydrogels. The swelling behavior of the PHEMA homopolymer hydrogel has little pH dependency. However, when the PHEMA is copolymerized with acrylic acid, the copolymer swells more at high pH condition. When dimethyl amine functional groups are introduced to the PHEMA hydrogel, the copolymer shows the opposite swelling behavior, i.e. higher swelling ratio at lower pH condition. Thus, the swelling behavior of the PHEMA-based hydrogel can be controlled by introducing different functional groups. Furthermore, we investigate the effect of initiator and crosslinker compositions on the swelling ratio of the hydrogel, to achieve more drastic pH-dependent swelling behavior. This study would provide helpful information for hydrogel-based applications, such as sensors and actuators.
- Hoffman AS, Adv. Drug Deliv. Rev., 54, 3 (2002)
- Ahn JH, Jeon YS, Chung DJ, Kim JH, Polym. Korea, 35(1), 94 (2011)
- Nigro V, Angelini R, Bertoldo M, Ruzicka B, Colloids Surf. A: Physicochem. Eng. Asp., 532, 389 (2017)
- Lohmann O, Micciulla S, Soltwedel O, Schneck E, von Klitzing R, Macromolecules, 51(8), 2996 (2018)
- Cai Z, Sasmal A, Liu X, Asher SA, ACS Sensors, 2, 1474 (2017)
- Montheard JP, Chatzopoulos M, Chappard D, Polym. Rev., 32, 1 (1992)
- Perova TS, Vij JK, Xu H, Colloid Polym. Sci., 275, 323 (1997)
- Morita S, Kitagawa K, Ozaki Y, Vib. Spectrosc., 51, 28 (2009)
- Atzet S, Curtin S, Trinh P, Bryant S, Ratner B, Biomacromolecules, 9(12), 3370 (2008)
- Liew CW, Ng H, Numan A, Ramesh S, Polymers-basel, 8, 179 (2016)
- Bonkovoski LC, Martins AF, Bellettini IC, Garcia FP, Nakamura CV, Rubira AF, Muniz EC, Int. J. Pharm., 477, 197 (2014)
- Paterson SM, Brown DH, Chirila TV, Keen I, Whittaker AK, Baker MV, J. Polym. Sci. A: Polym. Chem., 48(18), 4084 (2010)
- Wang XG, Luo YW, Li BG, Zhi SP, Macromolecules, 42(17), 6414 (2009)
- Tagliazucchi M, Williams FJ, Calvo EJ, Chem. Commun., 46, 9004 (2010)
- Heise A, Hedrick JL, Frank CW, Miller RD, J. Am. Chem. Soc., 121(37), 8647 (1999)
- Swift T, Swanson L, Geoghegan M, Rimmer S, Soft Matter., 12, 2542 (2016)
- Teoh SK, Ravi P, Dai S, Tam KC, J. Phys. Chem. B, 109(10), 4431 (2005)
- Sharma T, Madras G, Bull. Mater. Sci., 39, 613 (2016)
- Kazemi F, Mohamadnia Z, Kaboudin B, Gharibi H, Ahmadinejad E, Taran Z, J. Photochem. Photobiol. A-Chem., 330, 102 (2016)
- Wilems TS, Lu X, Kurosu YE, Khan Z, Lim HJ, Callahan LAS, J. Biomed. Mater. Res. A, 105, 3059 (2017)
- Lee CK, Diesendruck CE, Lu EJ, Pickett AN, May PA, Moore JS, Braun PV, Macromolecules, 47(8), 2690 (2014)
- You JO, Auguste DT, Langmuir, 26(7), 4607 (2010)