Polymer(Korea), Vol.43, No.2, 235-242, March, 2019
반응성 상용화제의 함량이 수분산 폴리우레탄/실리카 나노복합체에 미치는 영향
Effects of the Amounts of Reactive Compatibilizer on Waterborne Polyurethane/Silica Nanocomposites
E-mail:
초록
졸-젤 공정을 통하여 수분산 폴리우레탄/실리카 나노복합체를 제조하였다. 3-aminopropyl triethoxysilane (APTES)을 반응성 상용화제로 사용하였으며, 이의 함량이 나노복합체의 모폴로지, 인장물성, 내수성, 표면 특성 및 열안정성, 동적·기계적 거동 등에 미치는 영향을 조사하였으며 상용화제의 아민기와 우레탄 prepolymer의 이소시아 네이트기와의 반응에 의해 우레아 구조를 갖는 하이브리드가 형성됨을 FTIR을 통해 확인하였다. 상용화제의 함량이 증가할수록 복합체 내의 실리카 분산상은 미세하고 균일해졌으며 복합체의 투명도는 향상되었다. 또한 상용화제 함량의 증가에 따라 복합체는 인장강도, 표면경도 및 내수성 등이 향상되었으며 비교적 큰 표면에너지를 가졌다. 열안정성 및 tanδ 등의 동적·기계적 특성도 상용화제 함량의 영향을 받는 거동을 보였다.
Using 3-aminopropyl triethoxysilane (APTES) as the reactive compatibilizer of polyurethane and silica, waterborne polyurethane/silica nanocomposites were synthesized via sol-gel process. The effects of the amount of hybrids formed by the reaction of polyurethane prepolymer and APTES on the morphology, tensile property, water resistance, surface property, thermal stability and dynamic mechanical behaviour were investigated. The formation of urea between NCO in polyurethane prepolymer and NH2 in APTES was confirmed by FTIR. As increasing the amount of hybrids, silica particles in the composites appeared to be more uniform and reduced in size. Tensile strength, surface hardness, water resistance increased with increasing the amount of hybrids in the composites. Thermal stability and dynamic mechanical behaviour were also affected by the amount of hybrids in the composites.
Keywords:waterborne polyurethane;silica;sol-gel process;reactive compatibilizer;3-aminopropyl triethoxysilane
- Oertel G, Polyurethane Handbook, Cal Hanser, Munich, 1985.
- Woods G, The ICI Polyurethane Book, 2nd ed., Wiley, 1990.
- Thomas P, Waterborne & Solvent Based Surface Coating Resins and their Applications: Plolyurethane, SITA Techology Ltd., London, 1999.
- Lee JH, Kim JH, Kim BK, Jeong HM, Polym. Sci. Technol., 12, 724 (2001)
- Kim BK, Lee JC, J. Polym. Sci. A: Polym. Chem., 34(6), 1095 (1996)
- Jeon HT, Jang MK, Kim BK, Kim KH, Colloids Surf. A: Physicochem. Eng. Asp., 302, 559 (2007)
- Noble KL, Prog. Org. Coat., 32, 131 (1997)
- Lei L, Xia Z, Zhang L, Zhang Y, Zhong L, Prog. Org. Coat., 97, 19 (2016)
- Brinker CJ, Scherer GW, Sol-Gel Science, 1990.
- Rahman MM, Kim HD, J. Appl. Polym. Sci., 102(6), 5684 (2006)
- Snaryanto, Nishino T, Asaoka S, Nakamae K, Int. J. Adhes. Adhes., 21, 71 (2001)
- Zhai LL, Liu RW, Peng F, Zhang YH, Zhong K, Yuan JX, Lan YJ, J. Appl. Polym. Sci., 128(3), 1715 (2013)
- Shin SH, Jeong BH, Chung ID, Jo NJ, Cheng JM, Chun JH, J. Adhes. Interf., 11, 100 (2010)
- Kang SG, Song BG, Lee JH, Park CJ, Ryu H, J. Korean Ind. Eng. Chem., 14(3), 325 (2003)
- Peruzzo PJ, Anbinder PS, Pardini OR, Vega J, Costa CA, Galembeck F, Amalvy JI, Prog. Org. Coat., 72, 429 (2011)
- Lee JS, Kim BK, J. Appl. Polym. Sci., 82(6), 1315 (2001)
- Jung DE, Yoo BR, Polym. Sci. Technol., 20, 124 (2009)
- Park JO, Polym. Sci. Technol., 8(3), 261 (1997)
- Kim KM, Polym. Sci. Technol., 20, 131 (2009)
- Lee MY, Park JY, Song KC, Kim SK, Elastomers Compos., 51, 106 (2016)
- Ahn JH, Kim I, Kim CS, Polym. Sci. Technol., 20, 141 (2009)
- Krevelen DW, Properties of Polymers, 2009.
- Bauer BJ, Liu DW, Jackson CL, Barnes D, Polym. Adv. Technol., 7, 333 (1995)
- Novak BM, Ellsworth MW, Verrier C, ACS PMSE Preprints, 70, 266 (1994)
- Lai SM, Wang CK, Shen HF, J. Appl. Polym. Sci., 97(3), 1316 (2005)
- Xia Y, Larock RC, Macromol. Rapid Commun., 32(17), 1331 (2011)
- Zhang S, Chen Z, Guo M, Zhao J, Liu X, RSC Adv., 4, 30938 (2014)
- Lai XJ, Li XR, Wang L, Shen YD, Polym. Bull., 65(1), 45 (2010)