화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.2, 309-315, March, 2019
효소 촉매를 이용한 주입형 카라기난 하이드로젤의 합성 및 특성분석
Synthesis and Characterization of Enzyme-Mediated Injectable Carrageenan Hydrogels
E-mail:
초록
카라기난은 붉은 해초류에서 추출한 성분이며, 황산 다당류 계열의 생체 고분자이다. 카라기난은 분자간 상호 작용에 의해 열 가역적 젤을 형성하기 때문에 in vivo 실험이 제한된다. 본 연구에서는 horseradish peroxidase(HRP) 효소 매개 반응을 이용해서 주사가능한 카라기난 기반의 kappa-carrageenan-PEG-Tyramine(ka-CGPT) 하이드로젤 제조 및 그 물질의 물리화학적 특성분석을 하였다. Ka-CGPT 하이드로젤의 젤화 시간은 HRP 효소농도가 증가함에 따라 5~295초, 탄성률은 H2O2의 농도가 증가함에 따라 150~700 Pa까지 조절이 가능하였다. 또한 2차원의 in vitro세포 실험을 통하여 좋은 세포 생존율(110~140%)을 확인하였다. 앞에서 설명했던 결과를 바탕으로 이번 연구를 통해서 ka-CGPT 하이드로젤은 생체소재 분야에서 유망한 물질로 쓰일 수 있음을 기대한다.
Carrageenans (CGs) are hydrophilic, linear sulfated polysaccharides extracted from red algae. CGs have been utilized for tissue engineering due to their biocompatibility, and excellent physical properties. However, CGs form helical structures, which give them a gel-formation ability; hence, most CG hydrogels are thermo-reversible, ion-crosslinking methods. Because these hydrogels cannot carry heat-sensitive drugs, cells, in vivo application is limited. To solve these problems, enzymatic crosslinking method based on horseradish peroxidase (HRP)-mediated reactions with hydrogen peroxide (H2O2) was utilized to synthesize CG-based hydrogels. Gelation time was controlled from 5 sec to 5 min with various concentrations of HRP (0.005-0.025 mg/mL). It was found that the H2O2 concentration (0.005-0.035 wt%) can control the elastic modulus (150-700 Pa) of the hydrogels. In vitro 2D cell viability studies demonstrated that the ka- CGPT hydrogels had excellent bioactivity. Such injectable hydrogel platforms are promising materials and will be utilized for various tissue engineering strategies.
  1. Mihaila SM, Gaharwar AK, Reis RL, Marques AP, Gomes ME, Khademhosseini A, Adv. Healthc. Mater., 2, 895 (2013)
  2. Lee JS, Wang B, Kim JY, Kim YJ, Kim JH, Polym. Korea, 40(5), 759 (2016)
  3. Singh NK, Lee DS, J. Control. Release, 193, 214 (2014)
  4. Mironi-Harpaz I, Hazanov L, Engel G, Yelin D, Seliktar D, Adv. Mater., 27(11), 1933 (2015)
  5. Hooshangi V, Abasian M, Moghadam PN, Naghadeh ZJ, Polym. Korea, 40(6), 829 (2016)
  6. Kim BY, Lee YS, Son JY, Park KM, Park KD, Macromol. Biosci., 16, 1570 (2016)
  7. Kim DY, Park H, Lee KY, Polym. Korea, 39(3), 412 (2015)
  8. Dahlmann J, Krause A, Moller L, Kensah G, Mowes M, Diekmann A, Biomater., 34, 940 (2013)
  9. Cao L, Cao B, Lu C, Wang G, Yu L, Ding J, J. Mater. Chem. B, 3, 1268 (2015)
  10. Ghobril C, Grinstaff M, Chem. Soc. Rev., 44, 1820 (2015)
  11. Atala A, Cima L, Kim W, Paige K, Vacanti J, Retik A, Vacanti C, J. Urol., 150, 745 (1993)
  12. Elisseeff J, Anseth K, Sims D, McIntosh W, Randolph M, Langer R, PNAS, 96, 3104 (1999)
  13. Hu J, Zhang G, Liu S, Chem. Soc. Rev., 41, 5933 (2012)
  14. Bae J, Choi J, Lee Y, Park KD, J. Tissue Eng. Regen. Med., 9, 1225 (2015)
  15. Sivashanmugam A, Kumar RA, Priya MV, Nair SV, Jayakumar R, Eur. Polym. J., 72, 543 (2015)
  16. Fan C, Fu J, Zhu W, Wang DA, Acta Biomater., 33, 51 (2016)
  17. Yegappan R, Selvaprithiviraj V, Amirthalingam S, Jayakumar R, Carbohydr. Polym., 198, 385 (2018)
  18. Yan LU, Qin-Ming K, Rong J, Xiao H, Pu-Xin Z, Polym. Degrad. Stabil., 98, 1103 (2013)
  19. Zhu M, Ge L, Lyu Y, Zi Y, Li X, Li D, Mu C, Carbohydr. Polym., 174, 1051 (2017)