화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.4, 205-210, April, 2019
과 액상 형성에 의한 비납계 압전 (Na,K)NbO3.Ba(Cu,Nb)O3 결정립의 비정상 성장 거동 및 전기적 특성
Fast Abnormal Grain Growth Behavior and Electric Properties of Lead-Free Piezoelectric (K,Na)NbO3.Ba(Cu,Nb)O3 Grains through Transient Liquid Phase
E-mail:
Pb(Zr,Ti)O3 (PZT) is used for the various piezoelectric devices owing to its high piezoelectric properties. However, lead (Pb), which is contained in PZT, causes various environment contaminations. (K,Na)NbO3 (NKN) is the most well-known candidate for a lead-free composition to replace PZT. A single crystal has excellent piezoelectric-properties and its properties can be changed by changing the orientation direction. It is hard to fabricate a NKN single crystal due to the sodium and potassium. Thus, (Na,K)NbO3-Ba(Cu,Nb)O3 (NKN-BCuN) is chosen to fabricate the single crystal with relative ease. NKNBCuN pellets consist of two parts, yellow single crystals and gray poly-crystals that contain copper. The area that has a large amount of copper particles may melt at low temperature but not the other areas. The liquid phase may be responsible for the abnormal grain growth in NKN-BCuN ceramics. The dielectric constant and tan δ are measured to be 684 and 0.036 at 1 kHz in NKN-BCuN, respectively. The coercive field and remnant polarization are 14 kV/cm and 20 μC/cm2.
  1. Park CK, Kang DK, Lee SH, Kong YM, Jeong DY, J. Korean Inst. Electr. Electron. Mater. Eng., 30, 541 (2017)
  2. Zhang MH, Thong HC, Lu YX, Sun W, Li JF, Wang K, J. Korean Ceram. Soc., 54, 261 (2017)
  3. Park JH, Park HJ, Choi BC, Korean J. Mater. Res., 26(12), 721 (2016)
  4. Kim JW, Lim JH, Kim SH, Koo CY, Ryu J, Jeong DY, J. Ceram. Process. Res., 19, 243 (2018)
  5. Lee D, Vu H, Sun H, Pham TL, Nguyen DT, Lee JS, Fisher JG, Ceram. Int., 42, 18894 (2016)
  6. Uwiragiye E, Farooq MU, Moon SH, Pham TL, Nguyen DT, Lee JS, Fisher JG, J. Eur. Ceram. Soc., 37, 4597 (2017)
  7. Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng XJ, Zheng T, Zhang BY, Lou XJ, Wang XJ, J. Am. Chem. Soc., 136(7), 2905 (2014)
  8. Ahn CW, Rahman A, Ryu J, Choi JJ, Kim JW, Yoon WH, Hahn BD, Cryst. Growth Des., 16, 6586 (2016)
  9. Ahn CW, Park CS, Choi CH, Nahm S, Yoo MJ, Lee HG, Priya S, J. Am. Ceram. Soc., 92(9), 2033 (2009)
  10. Han G, Ryu J, Ahn CW, Yoon WH, Choi JJ, Hahn BD, Kim JW, Choi JH, Park DS, J. Am. Ceram. Soc., 95(5), 1489 (2012)
  11. Rahman A, Cho KH, Ahn CW, Ryu J, Choi JJ, Kim JW, Yoon WH, Choi JH, Park DS, Hahn BD, J. European Ceram. Soc., 38, 1416 (2018)
  12. Ahn CW, Lee HY, Han G, Zhang S, Choi SY, Choi JJ, Kim JW, Yoon WH, Choi JH, Park DS, Hahn BD, Ryu J, Sci. Rep., 5, 17656 (2015)
  13. Zhen YH, Li JF, J. Am. Ceram. Soc., 90(11), 3496 (2007)
  14. Kim JH, Seo IT, Hur J, Kim DH, Nahm S, Korean Ceram. Soc., 53, 129 (2016)
  15. Zhu B, Zhu Y, Yang J, Yang JO, Yang X, Li Y, Wei W, Sci. Rep., 6, 39679 (2016)
  16. Yang J, Zhang F, Yang Q, Liu Z, Li Y, Liu Y, Zhang Q, Appl. Phys. Lett., 108, 182904 (2016)
  17. Jiang N, Fang B, Du Q, Zhou L, Ferroelectrics, 413, 73 (2011)
  18. Uchino K, Ferroelectric Devices, 2nd ed., p.80, Taylor & Francis, Boca Raton, Florida, United States (2009).