화학공학소재연구정보센터
Macromolecular Research, Vol.27, No.3, 243-249, March, 2019
Synchronous Polymerization of 3,4-Ethylenedioxythiophene and Pyrrole by Plasma Enhanced Chemical Vapor Deposition (PECVD) for Conductive Thin Film with Tunable Energy Bandgap
E-mail:
Using a plasma enhanced chemical vapor deposition (PECVD) technique, a synchronous polymerization of 3,4-ethylenedioxythiophene (EDOT) and pyrrole monomers was investigated for the development of thin films with adjusted optoelectronic properties. Maintaining a constant amount of EDOT- and pyrrole-feed in the presence of a carrier gas, the PECVD reaction power was varied in the range of 10?100 W to give different physicochemical states of composite films composed of poly(3,4-ethylenedioxythiophene) (PEDOT) and polypyrrole (PPy). The deposition rate gradually increased with the reaction power reaching the highest deposition rate at 30 nm/min (100 W) in this study. The energy bandgap of the plasma-polymerized PEDOT/PPy copolymer films increased from 2.62 to 3.27 eV as the applied power density increased from 10 to 100 W in a continuous way, that could desirably ensure a tunable control of bandgaps in thin films. The electrical conductivity and the surface roughness of the thin films continuously increased from 1.59×10-4 to 2.28×10-2 S/m and from 0.2 to 1.9 nm respectively, as the applied power density decreased. The plasma-polymerized PEDOT/PPy copolymer is expected to find its application in various optoelectronic devices including the hole injection layer (HIL) in organic light-emitting diodes (OLEDs), and organic photovoltaics (OPVs) for the improved energy match.
  1. Moad G, Chen M, Haussler M, Postma A, Rizzardo E, Thang SH, Polym. Chem., 2, 492 (2011)
  2. Ramanavicius A, Ramanaviciene A, Malinauskas A, Electrochim. Acta, 51(27), 6025 (2006)
  3. Bai H, Shi G, Sensors, 7, 267 (2007)
  4. Chang CK, Fincher CR, Park YW, Heeger AJ, Shirakawa H, Louis EJ, Gau SC, MacDiarmid AG, Phys. Rev. Lett., 39, 1098 (1977)
  5. Winther-Jensen B, West K, Macromolecules, 37(12), 4538 (2004)
  6. Le Truong T, Kim DO, Lee Y, Lee TW, Park JJ, Pu L, Nam JD, Thin Solid Films, 516(18), 6020 (2008)
  7. Groenendaal BL, Jonas F, Freitag D, Pielartzik H, Reynolds JR, Adv. Mater., 12(7), 481 (2000)
  8. Welsh DM, Kumar A, Meijer EW, Reynolds JR, Adv. Mater., 11(16), 1379 (1999)
  9. Admassie S, Zhang FL, Manoj AG, Svensson M, Andersson MR, Inganas O, Sol. Energy Mater. Sol. Cells, 90(2), 133 (2006)
  10. Gadisa A, Tvingstedt K, Admassie S, Lindell L, Crispin X, Andersson M, Salaneck W, Inganas O, Synth. Met., 156, 1102 (2006)
  11. Lee TW, Chung YS, Adv. Funct. Mater., 18(15), 2246 (2008)
  12. Lee TW, Chung Y, Kwon O, Park JJ, Adv. Funct. Mater., 17(3), 390 (2007)
  13. Saito Y, Kitamura T, Wada Y, Yanagida S, Synth. Met., 131, 185 (2002)
  14. Tang CW, VanSlyke SA, Appl. Phys. Lett., 51, 6951 (1987)
  15. Hidekazu K, Sadao K, Shunichi S, Hiroshi K, Mutsumi K, Ichio Y, Satoru M, Tatsuya S, Towns CR, Friend JH, Burroughes RH, Synth. Met., 111, 125 (2000)
  16. Yang DK, in Fundamentals of Liquid Crystal Devices, Wiley, New York, pp.536-538 2001.
  17. Sax S, Rugen-Penkalla N, Neuhold A, Schuh S, Zojer E, List EJW, Mullen K, Adv. Mater., 22(18), 2087 (2010)
  18. Jang KS, Kim DO, Lee JH, Hong SC, Lee TW, Lee Y, Nam JD, Org. Electron., 11, 1668 (2010)
  19. Jonda C, Mayer ABR, Stolz U, Elschner A, Karbach A, J. Mater. Sci., 35(22), 5645 (2000)
  20. Lee HC, Kim KB, Lee SN, Lee J, Kim M, J. Nanoeng. Nanomanuf., 6, 146 (2016)
  21. Lee S, Cleason KK, Adv. Funct. Mater., 25, 85 (2014)
  22. Do L, Hwang D, Chu H, Kim S, Lee J, Park H, Zyung T, Synth. Met., 111, 249 (2000)
  23. Kim KB, Tak YH, Han YS, Baik KH, Lee MH, J. Appl. Phys., 42, 438 (2003)
  24. Xu YL, Wang J, Sun W, Wang SH, J. Power Sources, 159(1), 370 (2006)
  25. Kim DO, Lee PC, Kang SJ, Lee JH, Cho MH, Nam JD, Thin Solid Films, 517, 1456 (2009)
  26. Kupila EL, Lukkari J, Kankare J, Synth. Met., 74, 207 (1995)
  27. Cruz GJ, Morales J, Olayo R, Thin Solid Films, 342(1-2), 119 (1999)
  28. Goktas H, Ince FG, Iscan A, Yildiz I, Kurt M, Kaya I, Synth. Met., 159+, 2001 (2009)
  29. Kim TW, Lee JH, Back JW, Jung WG, Kim JY, Macromol. Res., 17(1), 31 (2009)
  30. Jang KS, Eom YS, Lee TW, Kim DO, Oh YS, Jung HC, Nam JD, ACS Appl. Mater. Interfaces, 1, 1567 (2009)
  31. Pistillo BR, Menguelti K, Desbenoit N, Arl D, Leturcq R, Ishchenko OM, Kunat M, Baumann PK, Lenoble D, J. Mater. Chem. C, 4, 5617 (2016)
  32. Groenewoud LMH, Engbers GHM, Feijen J, Langmuir, 19(4), 1368 (2003)
  33. Koparkar KA, Sens. Transducers J., 143, 10 (2012)
  34. Silverstein MS, Visoly-Fisher I, Polymer, 43(1), 11 (2002)
  35. Kristi M, Bozduman F, Osuz A, Hala A, Oksuz L, J. Macromol. Sci. Part A, 52, 124 (2015)
  36. Ince FG, Ozbek SZ, Goktas H, Oze ME, Capan R, J. Optoelect. Adv. Mater., 11, 1182 (2009)
  37. Groenewoud LMH, Engbers GHM, Terlingen JGA, Wormeester H, Feijen J, Langmuir, 15, 6278 (2000)
  38. Jatratkar AA, Yadav JB, Deshmukh RR, Barshillia HC, Puri V, Puri RK, Adv. Mater. Lett., 8, 180 (2017)
  39. Galca AC, Satulu V, Ionita MD, Barna E, Dumitru M, Mitu B, Dinescu G, J. Optoelectron. Adv. Mater., 10, 2033 (2008)
  40. Jeong DC, Wen L, Kim S, Nam JD, Han JG, Song C, Surf. Coat. Technol., 259, 27 (2014)
  41. Zhan LZ, Song ZP, Zhang JY, Tang J, Zhan H, Zhou YH, Zhan CM, Electrochim. Acta, 53(28), 8319 (2008)
  42. Li L, Huang Y, Yan G, Liu F, Huang Z, Ma Z, Mater. Lett., 63, 8 (2009)
  43. Chen TA, Wu XM, Rieke RD, J. Am. Chem. Soc., 117(1), 233 (1995)
  44. Singh RK, Kumar J, Singh R, Kant R, Chand S, Kumar V, Mater. Chem. Phys., 104(2-3), 390 (2007)
  45. Marciniak S, Crispin X, Uvdal K, Trzcinski M, Birgerson J, Groenendaal L, Louwet F, Salaneck WR, Synth. Met., 141, 67 (2004)
  46. Hsiao YS, Whang WT, Chen CP, Chen YC, J. Mater. Chem., 18, 5948 (2008)
  47. Jonson SKM, Birgerson J, Crispin X, Greczynski G, Osikowicz W, van der Gon AWD, Salaneck WR, Fahlman M, Synth. Met., 139, 1 (2003)
  48. Kim MC, Cho SH, Han JG, Hong BY, Kim YJ, Yang SH, Boo JH, Surf. Coat. Technol., 169, 595 (2003)
  49. Mukhopadhyay SC, Jayasundera KP, Fuchs A, in Advancement in Sensing Technology: New Developments and Practical Applications, Springer pp299-312 2013.
  50. Tauc J, in Amorphous and Liquid Semiconductors: Optical Properties of Amorphous Semiconductors, pp159-220 1974.
  51. Colladet K, Fourier S, Cleij TJ, Lutsen L, Gelan J, Vanderzande D, Nguyen LH, Neugebauer H, Sariciftci S, Aguirre A, Janssen G, Goovaerts E, Macromolecules, 40(1), 65 (2007)