화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.3, 379-386, May, 2019
PVA 바인더를 이용한 고형환원제 제조 및 특성연구
Preparation and Characterization of Solid Reducing Agent Using a PVA Binder
E-mail:
초록
본 연구에서는 불화수소(HF) 제거를 위한 구형 다공성 복합구조체인 고형환원제를 제조하였다. 먼저 지지체로 SiO2와 Ca(OH)2를 도입하여 CaO/SiO2 혼합물을 제조한 후, 바인더로 다양한 분자량을 갖는 폴리(비닐 알코올) (PVA)을 이용하여 여러 가지 조성으로 고형환원제를 제조하고 이들의 조성에 따른 열적특성, 모폴로지, 압축강도, 비표면적특성 및 기공특성을 조사하였다. CaO의 농도가 60 wt%인 혼합물에 바인더로 중량평균분자량이 31000~50000 인 PVA를 2 wt% 사용한 고형환원제(60-2PVA50K)의 경우 압축강도, 비표면적 및 기공도가 최적화되는 것을 확인 하였다. 바인더의 도입은 고형환원제가 분말화되는 것을 억제하면서 비표면적을 크게 하여 흡착특성을 향상시킬 수 있을 것으로 기대된다.
In this study, a solid reducing agent, a spherical porous composite structure for hydrogen fluoride (HF) removal, was prepared. First, SiO2 as a support and Ca(OH) 2 were introduced to prepare a CaO/SiO2 mixture, and poly(vinyl alcohol) (PVA) having various molecular weights was used as a binder to prepare solid reducing agents having various compositions. Thermal properties, morphology, compressive strength, specific surface area, and pore characteristics were investigated according to their compositions. The optimized compressive strength, the specific surface area and porosity were observed for the solid reducing agent (60-2PVA50K) using 2 wt% of PVA having a weight average molecular weight of 31000 to 50000 as a binder in a mixture having a CaO concentration of 60 wt%. The introduction of the binder is expected to increase the specific surface area and improve the adsorption characteristics while suppressing the formation of powder of the solid reducing agent.
  1. Yang CF, Kam SH, Liu CH, Tzou J, Wang JL, Chemosphere, 76, 1273 (2009)
  2. Choi CY, Kim JB, Lee SJ, J. KSEE, 34, 391 (2012)
  3. Qin L, Han J, Wang G, Kim HJ, Kawaguchi I, EPPH Conference(China), June 21-23, Chengdo, China (2010).
  4. Kanno S, Tamata S, Kurokawa H, 227th ACS Meeting (USA), March 28 ~ April 1, Anaheim, CA (2004).
  5. Choi SS, Park DW, Watanabe T, Nucl. Eng. Technol., 44, 21 (2014)
  6. Lee CM, Oh SC, Lee HP, Kim HT, Yoo KO, Korean J. Chem. Eng., 37, 430 (1999)
  7. Ngamcharussrivichai C, Meechan W, Ketcong A, Kangwansaichon K, Butnark S, J. Ind. Eng. Chem., 17(3), 587 (2011)
  8. Tang Z, Claveau D, Corcuff R, Belkacemi K, Mater. Lett., 62, 2096 (2008)
  9. Alavi MA, Morsali A, J. Exp. Nano, 5, 93 (2010)
  10. Zhu YQ, Wu SF, Wang XQ, Chem. Eng. J., 175, 512 (2011)
  11. Assabumrungrat S, Sonthisanga P, Kiatkittipong W, Laosiripojana N, Arpornwichanop A, Soottitantawat A, Wiyaratn W, Praserthdam P, J. Ind. Eng. Chem., 16(5), 785 (2010)
  12. Choi SS, Park DW, Watanabe T, Nucl. Eng. Technol., 44, 21 (2014)
  13. Yanagisawa Y, Shimodama H, Ito A, J. Chem. Soc., Chem.Commun., 610 (1993).
  14. Sohn JS, Roh SG, Sohn JY, Lim MH, Sadhasivam T, Lim HK, Ryi SK, Jung HY, Adv. Compos. Mater., 28, 65 (2019)
  15. Lei XF, Ma JX, J. Braz. Chem. Soc., 21, 209 (2010)
  16. Kim DY, Kim Y, Cho S, Jung JY, Kim MI, Lee YS, Appl. Chem. Eng., 24(6), 587 (2013)
  17. An HH, KIGAS, 14, 35 (2010)
  18. Oh WC, Anal. Sci. Technol., 13, 332 (2000)
  19. Tang ZX, Yu Z, Zhang ZL, Zhang XY, Pan QQ, Shi LE, Nova, 36, 993 (2013)
  20. Holland BJ, Hay JN, Polymer, 42(16), 6775 (2001)
  21. Brunauer S, Deming LS, Deming WE, Teller E, J. Am. Chem. Soc., 62, 1723 (1994)
  22. Rodriguez-Navarro C, Ruiz-Agudo E, Ortega-Huertas M, Hansen E, Langmuir, 21(24), 10948 (2005)
  23. Joshi UD, Joshi PN, Tamhankar SS, Joshi VP, Idage BB, Joshi VV, Shiralkar VP, Acta, 387, 121 (2002)
  24. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  25. Rouquerol F, Rouquerol J, Sing K, Adsorption by Powders and Porous Solids, Academic Press Inc., NewYork, p. 191 (1999).