화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.3, 401-409, May, 2019
코폴리머 폴리올 함량과 NCO 당량비 변화에 따른 자동차용 폴리우레탄 폼 시트 패드의 안락감 특성 연구
Effect of Copolymer Polyol Content and NCO Index on the Comfort of Polyurethane Seat Foam Pad for Automobiles
E-mail:
초록
본 연구에서는 코폴리머 폴리올 함량 및 다양한 NCO 당량비 변화에 따른 자동차 시트용 폴리우레탄 폼 패드의 정적 및 동적 안락감에 미치는 영향을 고찰하였다. 정적 안락감은 만능시험기(UTM)를 사용하여 폴리우레탄폼의 응력-변형도 선도 분석을 통해 25%, 65% ILD, 압축에너지손실률, sag factor를 측정하였고, 동적 안락감은 진동특성평가 장비를 사용하여 폴리우레탄 폼의 공진주파수 및 6 Hz에서의 진동전달률을 측정하였다. NCO 당량비 100일 때 폴리우레탄 폼 내 코폴리머 폴리올의 비율을 증대함에 따라 정적 안락감의 ILD 증가, 압축에너지손실률 감소 및 동적 안락감의 공진주파수 및 진동전달률이 증가하는 특성이 확인되었다. 시차 주사 열량계(DSC)를 활용하여 코폴리머 폴리올 함량에 따른 폴리우레탄 폼의 분자학적 유동성 변화를 관찰하고자 하였고, 코폴리머 폴리올 함량 증가 시 유리전이온도(Tg) 상승 현상 또한 확인할 수 있었다.
In this study, automobile seat static and dynamic comfort was studied by changing copolymer polyol content and NCO index. Static comfort was tested by UTM (universal testing machine), drawing stress-strain curve of the polyurethane foam followed by measuring 25%, 65% ILD (indentation load deflection), hysteresis loss rate and sag factor. Dynamic comfort was measured by testing the vibration characteristic of the polyurethane foam. As the proportion of the copolymer polyol in the NCO index 100 polyurethane foam increased, ILD also increased while hysteresis loss rate decreased in the static characteristic of the foam. For the dynamic characteristic, increase of the proportion of copolymer polyol resulted increasing resonance frequency and transmissibility. DSC (differential scanning calorimetry) was employed to investigate molecular mobility of the polyurethane foam by copolymer polyol content. The result by the DSC indicates that increase of copolymer polyol proportion have affected to higher glass transition (Tg).
  1. Wada H, Toyota Y, Horie A, Sasaki T, Polym. J., 40, 842 (2008)
  2. Cinelli P, Anguillesi I, Lazzeri A, Eur. Polym. J., 49, 1174 (2013)
  3. Lei YZ, Zhou ST, Zou HW, Liang M, Polym. Eng. Sci., 55(2), 308 (2015)
  4. Kang S, Cho I, Kim S, J. Korean Ind. Eng. Chem., 19(4), 427 (2008)
  5. Javni I, Song K, Lin J, Petrovic ZS, J. Cell. Plast., 47, 357 (2011)
  6. Lin Y, Hsieh F, Huff HE, J. Appl. Polym. Sci., 65(4), 695 (1997)
  7. Rashmi BJ, Rusu D, Prashantha K, Lacrampe MF, Krawczak P, J. Appl. Polym. Sci., 128(1), 292 (2013)
  8. Wegener G, Brandt M, Duda L, Hofmann J, Klesczewski B, Koch D, Kumpf RJ, Orzesek H, Pirkl HG, Six C, Steinlein C, Weisbeck M, Appl. Catal. A: Gen., 221(1-2), 303 (2001)
  9. Wolfe HW, Mechanics of Cellular Plastics, pp 99-142 (1982).
  10. Hong CH, Back HS, Kim KM, Kim SY, Choi SM, Hwang TW, Polym. Korea, 31(1), 47 (2007)
  11. Kim TH, Kim DY, Kim HY, Oh JS, Lee SH, Choi KY, Park BH, Yim CK, KSAE 2012 Annual Conference and Exhibition, 11, 1877 (2012).
  12. Maris RV, Tamano Y, Yoshimura H, J. Cell. Plast., 41, 305 (2005)
  13. Jackovich D, O’toole B, Cameron M, J. Cell. Plast., 41, 153 (2005)
  14. Oka H, Tokunaga Y, Masuda T, J. Cell. Plast., 42, 307 (2006)
  15. Bastin B, Plaeja R, Lefebvre J, J. Cell. Plast., 39, 323 (2003)
  16. Blair GR, So R, Milivojevich, van Heumen JD, SAE Technical paper 980656 (1998).
  17. Suh KW, Park CP, Maurer MJ, Tusim MH, De Genova R, Broos R, Sophiea DP, Adv. Mater., 12(23), 1779 (2000)
  18. Vatalis AS, Kanapitsas A, Delides CG, Viras K, Pissis P, J. Appl. Polym. Sci., 80(7), 1071 (2001)
  19. Mitzner E, Goering H, Becker R, Macromol. Mater. Eng., 220, 177 (1994)
  20. Kanapitsas A, Pissisa P, Estrella AG, Eur. Polym. J., 35, 923 (1999)
  21. Maslov AN, Smirnova LA, Ryabov SA, Dergunov YI, Polym. Sci. Ser. B, 48, 190 (2006)
  22. White SW, Kim SK, Bajaj AK, Davies P, Showers DK, Liedtke PE, Nonlinear Dyn., 22, 281 (2000)
  23. Shim CS, Oh JS, Hong CK, Elast. Compos., 50, 81 (2015)
  24. Jang JY, Jhon YK, Cheong IW, Kim JH, Colloids Surf., 196, 135 (2002)
  25. Ravey M, Pearce EM, J. Appl. Polym. Sci., 63(1), 47 (1997)
  26. Zhang L, Jeon HK, Malsam J, Herrington R, Macosko CW, Polymer, 48(22), 6656 (2007)
  27. Scarfato P, Maio LD, Incarnato L, Composites Part B, 109, 45 (2017)