화학공학소재연구정보센터
Polymer(Korea), Vol.43, No.3, 440-446, May, 2019
나일론66/탄소필러 복합체의 물성에 대한 탄소섬유의 주/부 투입비의 영향
Effect of Main/Side Feeding Ratio of Carbon Fiber on the Properties of Nylon 66/Carbon Fiber Composites
E-mail:
초록
본 연구에서는 탄소섬유의 부/주 투입비율에 따른 나일론66/탄소필러 복합체의 물성에 미치는 영향을 고찰하였다. 복합체에 첨가된 탄소필러로는 카본블랙(CB)과 다중벽탄소나노튜브(MWCNT), 니켈 코팅된 탄소섬유(Ni-CF)등이 사용되었고, 첨가제로 흐름성개선제(2,2,6,6-tetramethyl-4-piperidinyl, BIS)와 산화방지제가 사용되었다. 복합체는 다이 온도 기준으로 280 °C 이축압출기에서 제조되었다. 복합체의 Ni-CF의 부/주 투입비는 20/0, 18/2, 14/6, 10/10, 6/14, 2/18, 0/20로 하였으며 Ni-CF 함량은 20 wt%로 고정하였다. 부 투입구의 함량이 증가할수록 섬유의 평균길이와 기계적 물성은 감소하였으나 전자파 차폐 성능은 증가하는 결과를 나타내었다. 기계적 물성과 전자파 차폐 성능을 모두 고려할 때 부/주 투입비 14/6에서 최적의 물성을 나타내었다.
In this study, the effect of main/side feeding ratio of the carbon fiber on the physical properties of the nylon66/ carbon filler composites was discussed. The carbon black (CB), multiwall carbon nanotubes (MWCNT), and nickelcoated carbon fibers (Ni-CF) were used as carbon fillers. Processing aids (2,2,6,6-tetramethyl-4-piperidinyl, BIS) and anti-oxidants were also used. The composites were fabricated by using a twin screw extruder at die temperature of 280 °C. The side/main feeding ratios of the composites are 20/0, 18/2, 14/6, 10/10, 6/14, 2/18, and 0/20. The concentration of Ni-CF was fixed at 20 wt%. As the side feeding content increases, the average length of fibers and mechanical properties of the composites were decreased but the EMI shielding performance was increased. Considering both mechanical properties and EMI shielding performance, the optimum side/main feeding ratio was determined as 14/6.
  1. Kweon OS, Jung JC, You H, Polym. Korea, 7, 342 (1983)
  2. Chung KT, Sabo A, Pica AP, J. Appl. Phys., 53, 6867 (1982)
  3. Chin WS, Lee DG, J. KSCM, 17, 68 (2004)
  4. Chung DDL, Carbon, 39, 279 (2001)
  5. Kim HM, Kim K, Lee SJ, Joo J, Yoon HS, Cho SJ, Lyu SC, Lee CJ, Curr. Appl. Phys., 4(6), 577 (2004)
  6. Chen HC, Lee KC, Lin JH, Composites Part A, 35, 1249 (2004)
  7. Yang S, Lozano K, Lomeli A, Foltz HD, Jones R, Composites Part A, 36, 691 (2005)
  8. Yuping D, Shunhua L, Hongtao G, Sci. Technol. Adv. Mater., 6, 513 (2005)
  9. Jung WK, Won MS, Ahn SH, J. Korean Soc. Precis. Eng., 22, 121 (2005)
  10. Kim YY, Yun JM, Lee YS, Kim HI, Carbon Lett., 12, 48 (2011)
  11. Yun S, Kim S, Kim S, ECU circuit design guideline for improving EMC performance, KSAE Annual Conference Proceedings, 2011.
  12. Kim YY, Yun J, Kim HI, Lee YS, J. Ind. Eng. Chem., 18(1), 392 (2012)
  13. Chen YH, Huang CY, Lai FD, Roan ML, Chen KN, Yeh JT, Thin Solid Films, 517(17), 4984 (2009)
  14. Liu Q, Zhang D, Fan T, Gu J, Miyamoto Y, Chen J, Carbon, 46, 461 (2008)
  15. Huang Y, Li N, Ma Y, Du F, Li F, He X, Chen Y, Carbon, 45, 1614 (2007)
  16. Liu Z, Bai G, Huang Y, Ma Y, Du F, Li F, Chen Y, Carbon, 45, 821 (2007)
  17. Bhadra S, Singha NK, Khastgir D, Curr. Appl. Phys., 9(2), 396 (2009)
  18. Shin KM, Sim CU, Lee JS, Kim YC, Polym. Korea, 42(3), 478 (2018)
  19. Zhang SM, Lin L, Deng H, Gao X, Bilotti E, Peijs T, Fu Q, Express Polym. Lett., 6, 159 (2012)
  20. Ma PC, Liu MY, Zhang H, Wang SQ, Wang R, Wang K, Kim JK, ACS Appl. Mater. Interfaces, 1, 1090 (2009)
  21. Sumfleth J, Adroher XC, Schulte K, J. Mater. Sci., 44(12), 3241 (2009)
  22. Arjmand M, Apperley T, Okoniewski M, Sundararaj U, Carbon, 50, 5126 (2012)
  23. Heiser JA, King JA, Konell JP, Sutter LL, Polym. Compos., 25, 407 (2004)
  24. Wang M, Wang W, Liu T, Zhang WD, Compos. Sci. Technol., 68, 2498 (2008)