화학공학소재연구정보센터
Applied Biochemistry and Biotechnology, Vol.188, No.2, 381-394, 2019
In Vitro Wound Healing Activity of Wheat-Derived Nanovesicles
Triticum aestivum plant extracts are often used as a natural healer in traditional medicine but which particles mainly have role in these processes are not scientifically proven. In other words, no attempts have been made to investigate the effects of wheat exosomes in regenerative medicine applications or drug development up to now. The current study was first time performed to demonstrate the activity of wheat exosomes in wound healing process using in vitro approaches. Although its fundamental wound healing process remains a mystery, in the current study, the efficiency of wheat grass juice-derived exosomes on cell viability and migration was examined. Increasing concentrations up to 200g/mL of the wheat exosome have yielded astonishing proliferative and migratory effects on endothelial, epithelial, and dermal fibroblast cells. RT-PCR analysis also showed collagen type I; mRNA levels were approximately twofold higher in expression after treating with 200g/mL wheat exosome. Additionally, Annexin V staining of apoptotic cells accompanied with the cell cycle analysis resulted with the reduction of the apoptotic cell number with no dispersion to the cell cycle analysis while plant exosomes have also increased tube-like structure formation of the endothelial cells. All in all, this research suggests a brand-new opening for skin wound healing therapy strategy by using wheat-derived exosomes due to its proliferative and migratory characteristics. Plant exosomes require a further research both clinically and in in vivo for wound healing drug development. Moreover, plant exosome therapy strategies would be safer and economical alternative for clinical wound healing.