화학공학소재연구정보센터
Korean Journal of Materials Research, Vol.29, No.5, 328-335, May, 2019
NiCrAl 합금 폼의 안정성 향상을 위해 코팅된 Nb-doped TiO2의 효과
The Effect of Nb-doped TiO2 Coating for Improving Stability of NiCrAl Alloy Foam
E-mail:
Nb-doped TiO2(NTO) coated NiCrAl alloy foam for hydrogen production is prepared using ultrasonic spray pyrolysis deposition(USPD) method. To optimize the size and distribution of NTO particles based on good physical and chemical stability, we synthesize particles by adjusting the weight ratio of the Nb precursor solution(5 wt%, 10 wt% and 15 wt%). The morphological, chemical bonding, and structural properties of the NTO coated NiCrAl alloy foam are investigated by X-ray diffraction(XRD), X-ray photo-electron spectroscopy(XPS), and Field-Emission Scanning Electron Microscopy(FESEM). As a result, the samples of controlled Nb weight ratio exhibit a common diffraction pattern at ~25.3° , corresponding to the(101) plane, and have chemical bonding(O-Nb=O) at 534 eV. The NTO particles with the optimum weight ratio of N (10 wt%) show a uniform distribution with a size of ~18.2-21.0 nm. In addition, they exhibit the highest corrosion resistance even in the electrochemical stability estimation. As a result, the introduction of NTO coated NiCrAl alloy foam by USPD improves the chemical stability of the NiCrAl alloy foam by protecting the direct electrochemical reaction between the foam and the electrolyte. Thus, the optimized NTO coating can be proposed for excellent protection of NiCrAl alloy foam for hydrocarbon-based steam methane reforming(SMR).
  1. Simsek E, Karakaya M, Avci AK, Onsan ZI, Int. J. Hydrog. Energy, 38(2), 870 (2013)
  2. Matsumura Y, Nakamori T, Appl. Catal. A: Gen., 258(1), 107 (2004)
  3. Jones G, Jakobsen JG, Shim SS, Kleis J, Andersson MP, Rossmeisl J, Abild-Pedersen F, Bligaard T, Helveg S, Hinnemann B, Rostrup-Nielsen JR, Chorkendorff I, Sehested J, Norskov JK, J. Catal., 259(1), 147 (2008)
  4. Liu CJ, Ye J, Jiang J, Pan Y, Chem. Cat. Chem., 3, 529 (2011)
  5. Salhi N, Boulahouache A, Petit C, Kiennemann A, Rabia C, Int. J. Hydrog. Energy, 36, 11439 (2011)
  6. Sin DY, Lee EH, Park MH, Ahn HJ, Korean J. Mater. Res., 26(7), 393 (2016)
  7. Katheria S, Deo G, Kunzru D, Energy Fuels, 31(3), 3143 (2017)
  8. Sreedhar G, Raja VS, Corrosion Sci., 52, 2592 (2010)
  9. Whangbo Y, Lim HR, Lee YI, Korean J. Mater. Res., 27(5), 270 (2017)
  10. Liu Q, Zhong ZY, Gu FN, Wang XY, Lu XP, Li HF, Xu GW, Su FB, J. Catal., 337, 221 (2016)
  11. Jiang L, Sun L, Yang D, Zhang J, Li YJ, Zou K, Deng WQ, ACS Appl. Mater. Interfaces, 9, 9576 (2017)
  12. Koo BR, Oh DH, Ahn HJ, Appl. Surf. Sci., 432, 27 (2018)
  13. Hirano M, Matsushima K, J. Am. Ceram. Soc., 89(1), 110 (2006)
  14. Mattsson A, Leideborg M, Larsson K, Westin G, Osterlund L, J. Phys. Chem. B, 110(3), 1210 (2006)
  15. Lee YJ, Koo BR, Baek SH, Park MH, Ahn HJ, Korean J. Mater. Res., 25(8), 391 (2015)
  16. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS, Appl. Surf. Sci., 257(7), 2717 (2011)
  17. Kwoka M, Galstyan V, Comini E, Szuber J, J. Nanomater., 7, 456 (2017)
  18. Mansour AN, Melendres CA, J. Electrochem. Soc., 142(6), 1961 (1995)
  19. Manole AV, Dobromir M, Girtan M, Mallet R, Rusu G, Luca D, Ceram. Int., 39, 4771 (2013)
  20. Wang Y, Smarsly BM, Djerdj, Chem. Mater., 22, 6624 (2010)
  21. Su HJ, Huang YT, Chang YH, Zhai P, Hau NY, Cheung PCH, Yeh WT, Wei TC, Feng SP, Electrochim. Acta, 182, 230 (2015)
  22. Shin DY, Bae JW, Koo BR, Ahn HJ, Korean J. Mater. Res., 27, 392 (2017)
  23. Lee YG, Shin DY, Ahn HJ, Korean J. Mater. Res., 28(6), 324 (2018)
  24. Lu XJ, Mou XL, Wu JJ, Zhang DW, Zhang LL, Huang FQ, Xu FF, Huang SM, Adv. Funct. Mater., 20(3), 509 (2010)