Korean Chemical Engineering Research, Vol.57, No.3, 387-391, June, 2019
Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells
E-mail:
A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL- 101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of 916 m2 g-1, and thus excellent electro-catalytic activity for urea oxidation. A urea/H2O2 fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of 8.7 mWcm-2 with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.
- Lan R, Tao S, Irvine JTS, Energy Environ. Sci., 3, 438 (2010)
- Xu W, Zhang H, Li G, Wu Z, Sci. Rep., 4, 5863 (2014)
- Guo F, Cao DX, Du MM, Ye K, Wang GL, Zhang WP, Gao YY, Cheng K, J. Power Sources, 307, 697 (2016)
- Ye K, Wang G, Cao D, Wang G, Topics in Current Chemistry, 376, 42(2018).
- Xu W, Wu Z, Tao S, Energy Technol., 4, 10 (2016)
- Yan W, Wang D, Botte GG, Appl. Catal. B: Environ., 127, 221 (2012)
- Wang L, Du TT, Cheng J, Xie X, Yang BL, Li MT, J. Power Sources, 280, 550 (2015)
- Shi W, Ding R, Li XD, Xu QL, Liu EH, Electrochim. Acta, 242, 247 (2017)
- Kumar R, Schechter A, ChemCatChem., 9, 3374 (2017)
- Xu W, Du D, Lan R, Humphreys J, Wu Z, New J. Chem., 41, 4190 (2017)
- Hameed RMA, Medany SS, J. Colloid Interface Sci., 513, 536 (2018)
- Nguyen NS, Das G, Yoon HH, Biosen. Bioelectron., 77, 372 (2016)
- Das G, Tesfaye RM, Won Y, Yoon HH, Electrochim. Acta, 237, 171 (2017)
- Barakat NAM, El-Newehy MH, Yasin AS, Ghouri ZK, Al-Deyab SS, Appl. Catal. A: Gen., 510, 180 (2016)
- Bhattacharjee S, Chen C, Ahn WS, RSC Adv., 4, 52500 (2014)
- Sabouni R, Kazemian H, Rohani S, Microporous Mesoporous Mater., 175, 85 (2013)
- Mishra P, Mekala S, Dreisbach F, Mandal B, Gumma S, Sep. Purif. Technol., 94, 124 (2012)
- Li W, Liu J, Zhao D, Nat. Rev. Mater., 1, 16023 (2016)
- Hibino T, Kobayashi K, Ito M, Nagao M, Fukui M, Teranishi S, Appl. Catal. B: Environ., 231, 191 (2018)
- Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I, Science, 309, 2040 (2005)
- Montazerolghaem M, Aghamiri SF, Tangestaninejad S, Talaie MR, RSC Adv., 6, 632 (2016)
- Jiang D, Burrows AD, Edler KJ, CrystEngComm., 13, 6916 (2011)
- Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG, Wei Q, Fan M, RSC Adv., 3, 22739 (2013)
- Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR, Chem. Rev., 112(2), 724 (2012)
- Moon HR, Lim DW, Suh MP, Chem. Soc. Rev., 42, 1807 (2013)
- Saha D, Deng SG, Langmuir, 25(21), 12550 (2009)
- Tran TQN, Das G, Yoon HH, Sens. Actuators B-Chem., 243, 78 (2017)
- Vedharathinam V, Botte GG, Electrochimica Acta., 81, 292 (2012)
- Lan R, Tao SW, J. Power Sources, 196(11), 5021 (2011)