화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.57, No.3, 387-391, June, 2019
Ni Nanoparticles Supported on MIL-101 as a Potential Catalyst for Urea Oxidation in Direct Urea Fuel Cells
E-mail:
A highly porous Ni@MIL-101catalyst for urea oxidation was synthesized by anchoring Ni into a Cr-based metal-organic framework, MIL-101, particles. The morphology, structure, and composition of as synthesized Ni@MIL- 101 catalysts were characterized by X-Ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy. The electro-catalytic activity of the Ni@MIL-101catalysts towards urea oxidation was investigated using cyclic voltammetry. It was found that the structure of Ni@MIL-101 retained that of the parent MIL-101, featuring a high BET surface area of 916 m2 g-1, and thus excellent electro-catalytic activity for urea oxidation. A urea/H2O2 fuel cell with Ni@MIL-101 as anode material exhibited an excellent performance with maximum power density of 8.7 mWcm-2 with an open circuit voltage of 0.7 V. Thus, this work shows that the highly porous three-dimensional Ni@MIL-101 catalysts can be used for urea oxidation and as an efficient anode material for urea fuel cells.
  1. Lan R, Tao S, Irvine JTS, Energy Environ. Sci., 3, 438 (2010)
  2. Xu W, Zhang H, Li G, Wu Z, Sci. Rep., 4, 5863 (2014)
  3. Guo F, Cao DX, Du MM, Ye K, Wang GL, Zhang WP, Gao YY, Cheng K, J. Power Sources, 307, 697 (2016)
  4. Ye K, Wang G, Cao D, Wang G, Topics in Current Chemistry, 376, 42(2018).
  5. Xu W, Wu Z, Tao S, Energy Technol., 4, 10 (2016)
  6. Yan W, Wang D, Botte GG, Appl. Catal. B: Environ., 127, 221 (2012)
  7. Wang L, Du TT, Cheng J, Xie X, Yang BL, Li MT, J. Power Sources, 280, 550 (2015)
  8. Shi W, Ding R, Li XD, Xu QL, Liu EH, Electrochim. Acta, 242, 247 (2017)
  9. Kumar R, Schechter A, ChemCatChem., 9, 3374 (2017)
  10. Xu W, Du D, Lan R, Humphreys J, Wu Z, New J. Chem., 41, 4190 (2017)
  11. Hameed RMA, Medany SS, J. Colloid Interface Sci., 513, 536 (2018)
  12. Nguyen NS, Das G, Yoon HH, Biosen. Bioelectron., 77, 372 (2016)
  13. Das G, Tesfaye RM, Won Y, Yoon HH, Electrochim. Acta, 237, 171 (2017)
  14. Barakat NAM, El-Newehy MH, Yasin AS, Ghouri ZK, Al-Deyab SS, Appl. Catal. A: Gen., 510, 180 (2016)
  15. Bhattacharjee S, Chen C, Ahn WS, RSC Adv., 4, 52500 (2014)
  16. Sabouni R, Kazemian H, Rohani S, Microporous Mesoporous Mater., 175, 85 (2013)
  17. Mishra P, Mekala S, Dreisbach F, Mandal B, Gumma S, Sep. Purif. Technol., 94, 124 (2012)
  18. Li W, Liu J, Zhao D, Nat. Rev. Mater., 1, 16023 (2016)
  19. Hibino T, Kobayashi K, Ito M, Nagao M, Fukui M, Teranishi S, Appl. Catal. B: Environ., 231, 191 (2018)
  20. Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I, Science, 309, 2040 (2005)
  21. Montazerolghaem M, Aghamiri SF, Tangestaninejad S, Talaie MR, RSC Adv., 6, 632 (2016)
  22. Jiang D, Burrows AD, Edler KJ, CrystEngComm., 13, 6916 (2011)
  23. Kenarsari SD, Yang D, Jiang G, Zhang S, Wang J, Russell AG, Wei Q, Fan M, RSC Adv., 3, 22739 (2013)
  24. Sumida K, Rogow DL, Mason JA, McDonald TM, Bloch ED, Herm ZR, Bae TH, Long JR, Chem. Rev., 112(2), 724 (2012)
  25. Moon HR, Lim DW, Suh MP, Chem. Soc. Rev., 42, 1807 (2013)
  26. Saha D, Deng SG, Langmuir, 25(21), 12550 (2009)
  27. Tran TQN, Das G, Yoon HH, Sens. Actuators B-Chem., 243, 78 (2017)
  28. Vedharathinam V, Botte GG, Electrochimica Acta., 81, 292 (2012)
  29. Lan R, Tao SW, J. Power Sources, 196(11), 5021 (2011)