화학공학소재연구정보센터
Chemical Engineering Journal, Vol.371, 657-665, 2019
Hierarchical zeolitic imidazolate framework-derived manganese-doped zinc oxide decorated carbon nanofiber electrodes for high performance flexible supercapacitors
We demonstrate freestanding, flexible, and cost-effective supercapacitor electrodes comprising carbon nanofibers (CNFs) decorated with metal oxide framework (MOF)-derived manganese-doped zinc oxide (Mn@ZnO). Nanoparticles of manganese-doped zeolitic imidazolate framework (ZIF-8) were grown directly on electrospun polyacrylonitrile nanofibers by a simple solution-phase synthesis. Carbonization of these composite fibers produced high surface area dodecahedral Mn@ZnO on core CNFs that provide fast electron-transfer pathways. The synergy between Mn@ZnO (active sites for Faradaic reactions) and the highly electrically conductive carbon nanofiber improves the performance of the supercapacitor electrode. The Mn@ZnO/CNF electrodes exhibit a high specific capacitance of 501 F.g(-1) and retain> 92% of their initial capacitance after 10,000 cycles. The optimized Mn@ZnO/CNF electrodes deliver impressive energy densities of 72.1 W.h.kg(-1) and 33.3 W.h.kg(-1) at power densities of 500 W.kg(-1) and 5000 W.kg(-1), respectively. This electrochemical performance demonstrates that the Mn@ZnO/CNF nanostructured composite is a robust electrode material for long-lifetime high-rate energy storage/delivery devices.