Computers & Chemical Engineering, Vol.122, 80-92, 2019
Integrated design and operation of renewables-based fuels and power production networks
We assess the potential synergies of integrating renewables-based fuels and power production processes in one network, with a strong emphasis on the consideration of operational constraints and time-varying availability of renewable resources. We propose a multiscale mixed-integer linear programming model that combines superstructure-based synthesis and integrated production planning and scheduling. The model is applied to a particular region in Spain, where we analyze the feasibility of a renewables-based process network in terms of meeting given demands for gasoline, diesel, and electricity. The optimal and sometimes counterintuitive designs highlight the complex interactions and help identify bottlenecks in these process networks. Moreover, we solve each case using the multiscale model as well as a commonly used aggregate model; the two models obtain remarkably different solutions. The proposed multiscale model obtains high-quality solutions that stand the test of re-evaluation using a detailed model, whereas the aggregate model proposes network configurations that only satisfy small portions of the demands. (C) 2018 Elsevier Ltd. All rights reserved.
Keywords:Renewable energy;Power production;Biofuels production;Integrated design and operation;Process network