Fuel Processing Technology, Vol.188, 179-189, 2019
Investigation of sulphated CuCl2/TiO2 catalyst for simultaneous removal of Hg-0 and NO in SCR process
To achieve the oxidation of mercury in the presence of HCI with low concentration and mitigate the inhibition effect of NH3, sulphated CuCl2/TiO2 catalyst was investigated for simultaneous removal of Hg and NO in SCR process. The sulphation was conducted by exposing CuCl2/TiO2 catalyst to a gas stream containing SO2 and O-2. Characterizations of catalysts (BET, XRD, XRF, XPS, TG-MS and NH3-TPD) were carried out to illuminate the structure-performance relationship. Results showed that the remained CuCl2 and generated CuSO4 over this catalyst were responsible for Hg oxidation and NH3-SCR reaction. The generated CuSO4 increased the amount of acid sites on catalyst surface thus promoting the SCR activity. CuCl2(S18)/TiO2 catalyst exhibited simultaneous catalytic oxidation of Hg (around 73.9%) and NO (around 87%) at the temperature of 325 degrees C. Hg oxidation over this catalyst was not handicapped by the low content of HCl in gas stream, different from commercial SCR catalyst. Individual NO and NH3 showed insignificant effect on Hg oxidation. While the co presence of NO and NH3 somewhat inhibited it. Moreover, good resistance to the moderate concentration of SO2 and H2O for the catalyst was observed.