화학공학소재연구정보센터
International Journal of Hydrogen Energy, Vol.44, No.21, 10788-10799, 2019
Microstructural evolution and hydrogen storage properties of a Ni-modified Mg15Al alloy
On the basis of modification of transition metals on Mg-Al hydrogen storage alloys, Mg15Al5Ni alloy with Ni content of 5 wt% has been prepared by high energy ball mill. The results show that Ni particles uniformly distribute on the surface of particles, while several Ni particles are embedded inside alloy particles. These Ni particles tend to redistribute after hydrogenation. The phase composition analysis reveals the formation of stable Al3Ni2 phase in Ni-modified alloy after hydrogenation. The hydrogen absorption performance of Mg15Al5Ni alloy has been improved by introducing Ni, which can absorb 4.36 wt% hydrogen within 5 min at 350 degrees C. Meanwhile, the activation properties of Mg15Al5Ni alloy can be obviously deteriorated due to the addition of Ni. However, uniformly distributed Al3Ni2 nanocrystals with grain sizes around 10 nm hinder grain growth of hydrides, ameliorating hydrogenation kinetics of Mg15Al5Ni alloy. Besides, the modified effect of Ni on hydrogenation kinetics of Mg15Al5Ni alloy has been also discussed in this work. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.