International Journal of Hydrogen Energy, Vol.44, No.20, 9914-9921, 2019
Preparation and characterization of palladium ceramic alumina membrane for hydrogen permeation
In this study, a tubular palladium membrane has been prepared by an electroless plating method using palladium II chloride as a precursor with the intent of not having a completely dense film since its application does not require high hydrogen selectivity. The support used was a 15 nm pore sized tubular ceramic alumina material that comprised of 77% alumina and 33% titania. It has dimensions of 7 mm inner and 10 mm outer diameters respectively. The catalyst was deposited on the outside tube surface using the electroless deposition process. The membrane was morphologically characterized using scanning electron microscopy/energy dispersive x-ray analysis (SEM/EDXA) and liquid nitrogen adsorption/desorption analysis (BET) to study the shape and nature of the palladium plating on the membrane. The catalytic membrane was then inserted into a tubular stainless-steel holder which was wrapped in heating tapes so as to enable the heating of the membrane in the reactor. The gases used for permeation tests comprised H-2, N-2, O-2 and He. Permeation tests were out at 573 K and at pressure range between 0.05 and 1 barg. The results showed that hydrogen displayed a higher permeation when compared to other gases that permeated through the membrane and its diffusion is also thought to include solution diffusion through the dense portions of the palladium in addition to Knudsen, convective and molecular sieving mechanisms occurring through cracks and voids along the grain boundaries. While high hydrogen selectivity is critically important in connection with hydrogen purification for fuel cells and in catalytic membrane reactors used to increase the yield of thermodynamically limited reactions such as methane steam reforming and water gas shift reactions whereby the effective and selective removal of the H-2 produced from the reaction zone shifts the equilibrium, it is not so important in situations in which the membrane has catalytic activity such that it is possible to carryout the reaction in situations where the premixed reactants are forced-through the membrane on which the catalysts is attached. This type of catalytically active membranes is novel and has not been tested in gas-solid-liquid reactions and liquid-solid reactions before. With such a reactor configuration, it is possible to achieve good feed stream distribution and an optimal usage of the catalytic material. The preparation and characterization of such membrane catalysts has gained increased interest in the process industries because it can be adapted to carryout the chemical reactions if one of the reactants is present in low concentration and an optimal reactant distribution results in a better utilization of the active catalytic material. However, there are concerns in terms of the high cost of palladium membranes and research on how to fabricate membranes with a very low content of the palladium catalyst is still ongoing. Work is currently underway to deploy the Pd/Al2O3 membrane catalysts for the deoxygenating of water for downhole injection for pressure maintenance and in process applications. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.