화학공학소재연구정보센터
Applied Chemistry for Engineering, Vol.30, No.3, 308-312, June, 2019
양친매성 금입자 표면의 소수성/친수성 비율에 대한 온도 영향
Effects of Temperature on the Hydrophobic to Hydrophilic Ligand Ratio on the Surface of Amphiphilic Gold Nanoparticles
E-mail:,
초록
양친매성 금입자는 그 표면에 소수성 및 친수성 리간드를 결합시켜 합성된다. 이러한 양친매성 입자들은 바이오, 에너지, 광학, 전자 공학 분야 등에 다양하게 활용될 수 있다. 입자 표면의 소수성/친수성 비율은 양친매성 금입자의 물리 화학적 특성과 밀접한 관계가 있어 양친매성 금입자를 활용하는데 있어서 상당히 중요한 역할을 한다. 본 연구에서는 양친매성 금입자 합성 과정(리간드 치환반응)에서 온도 변화에 대한 표면의 소수성과 친수성 리간드 비율의 영향을 알아보았다. 치환 반응의 온도가 증가함에 따라서 표면의 친수성 리간드의 비율이 증가하고, 또한 더 적은 친수성 리간드의 비율에서도 양친매성 금입자가 수용액상에 개별적으로 잘 분산되는 것을 확인하였다.
Amphiphilic gold nanoparticles were synthesized by the functionalization of gold nanoparticles with hydrophilic and hydrophobic ligands on their surfaces, which can be applied to many disciplines such as biology, photonics, electronics, and so on. The ratio of hydrophilic and hydrophobic ligands plays an important role in such applications since the ratio is closely related to physiochemical properties of the nanoparticles. In this paper, the effect of temperature during the ligand exchange reaction on the ratio of ligands on the gold nanoparticle surface was investigated. Hydrophilic ligands have higher affinity to the nanoparticle surface with an increase of the temperature. Furthermore, the amphiphilic nanoparticles at a higher temperature were more soluble in an aqueous solution even with a lower hydrophilicity of the nanoparticle surface.
  1. Eustis S, El-Sayed MA, Chem. Soc. Rev., 35, 209 (2006)
  2. Ludovico C, Geoffrey OA, Jean-Marie L, Concept of Nanochemistry, Wiley-VCH, Germany (2009).
  3. He J, Liu YJ, Babu T, Wei ZJ, Nie ZH, J. Am. Chem. Soc., 134(28), 11342 (2012)
  4. He J, Wei Z, Wang L, Tomova Z, Babu T, Wang C, Han X, Fourkas JT, Nie Z, Angew. Chem.-Int. Edit., 52, 2463 (2013)
  5. Jackson AM, Hu Y, Silva PJ, Stellacci F, J. Am. Chem. Soc., 128(34), 11135 (2006)
  6. Lee HY, Shin SHR, Abezgauz LL, Lewis SA, Chirsan AM, Danino DD, Bishop KJM, J. Am. Chem. Soc., 135(16), 5950 (2013)
  7. Lee HY, Shin SHR, Drews AM, Chirsan AM, Lewis SA, Bishop KJM, ACS Nano, 8, 9979 (2014)
  8. Jang HJ, Lee HY, Colloids Surf. A: Physicochem. Eng. Asp., 538, 574 (2018)
  9. Liu X, Yu M, Kim H, Mameli M, Stellacci F, Nat. Commun., 3, 1182 (2012)
  10. Lehn RCV, Alexander-Katz A, J. Phys. Chem. C., 117, 2014 (2013)
  11. Jang HJ, Shin SHR, Lee HY, J. Nanopart. Res., 20, 244 (2018)
  12. Andala DM, Shin SHR, Lee HY, Bishop KJM, ACS Nano, 6, 1044 (2012)
  13. Glogowski E, He J, Russell TP, Emrick T, Chem. Commun., 2005(32), 4050 (2005)
  14. Kubowicz S, Daillant J, Dubois M, Delsanti M, Verbavatz JM, Mohwald H, Langmuir, 26(3), 1642 (2010)
  15. Bizmark N, Ioannidis MA, Soft Matter, 14, 6404 (2018)
  16. Shin SHR, Lee HY, Bishop KJM, Angew. Chem.-Int. Edit., 54, 10816 (2015)
  17. Kalsin AM, Kowalczyk B, Wesson P, Paszewski M, Grzybowski BA, J. Am. Chem. Soc., 129(21), 6664 (2007)