Applied Chemistry for Engineering, Vol.30, No.3, 324-330, June, 2019
Preparation and Electrochemical Behaviors of Petal-like Nickel Cobaltite/Reduced Graphene Oxide Composites for Supercapacitor Electrodes
E-mail:,
Petal-like nickel cobaltite (NiCo2O4)/reduced graphene oxide (rGO) composites with different rGO-to-NiCo2O4 weight ratios were synthesized using a simple hydrothermal method and subsequent thermal treatment. In the NiCo2O4/rGO composite, the NiCo2O4 3-dimensional nanomaterials contributed to the improvement of electrochemical properties of the final composite material by preventing the restacking of the rGO sheet and securing ion movement passages. The composite structure was examined by field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), and Fourier-transform infrared (FT-IR) spectroscopy. The FE-SEM and TEM images showed that petal-like NiCo2O4 was supported on the rGO surface. Cyclic voltammetry (CV), galvanostatic charge-discharge (GCD), and electrochemical impedance spectroscopy (EIS) were used for the electrochemical analysis of composites. Among the prepared composites, 0.075 g rGO/NiCo2O4 composite showed the highest specific capacitance of 1,755 Fg-1 at a current density of 2 Ag-1. The cycle performance and rate capability of the composite material were higher than those of using the single NiCo2O4 material. These nano-structured composites could be regarded as valuable electrode materials for supercapacitors that require superior performance.
- Arico AS, Bruce P, Scrosati B, Tarascon JM, Van Schalkwijk W, Nat. Mater., 4(5), 366 (2005)
- Liu C, Yu Z, Neff D, Zhamu A, Jang BZ, Nano Lett., 10, 4863 (2010)
- Wang Y, Shi ZQ, Huang Y, Ma YF, Wang CY, Chen MM, Chen YS, J. Phys. Chem. C, 30, 13103 (2009)
- Dreyer DR, Park S, Bielawski CW, Ruoff RS, Chem. Soc. Rev., 39, 228 (2010)
- Englert JM, Dotzer C, Yang G, Schmid M, Papp C, Gottfried JM, Steinruck HP, Spiecker E, Hauke F, Hirsch A, Nat. Chem., 3, 279 (2011)
- Kim J, Kim Y, Park SJ, Jung Y, Kim S, J. Ind. Eng. Chem., 36, 139 (2016)
- Meher SK, Rao GR, J. Phys. Chem. C, 115, 15646 (2011)
- Kim J, Park SJ, Kim S, J. Nanosci. Nanotechnol., 18, 314 (2018)
- Patil UM, Salunkhe RR, Gurav KV, Lokhande CD, Appl. Surf. Sci., 255(5), 2603 (2008)
- Hu CC, Chang KH, Lin MC, Wu YT, Nano Lett., 6, 2690 (2006)
- Wei TY, Chen CH, Chien HC, Lu SY, Hu CC, Adv. Mater., 22(3), 347 (2010)
- Zhang C, Lei CL, Cen C, Tang SL, Deng MS, Li YL, Du YW, Electrochim. Acta, 260, 814 (2018)
- Jiang H, Yang K, Ye P, Huang Q, Wang L, Li S, RSC Adv., 8, 37550 (2018)
- Hao C, Zhou SS, Wang JJ, Wang XH, Gao HW, Ge CW, Ind. Eng. Chem. Res., 57(7), 2517 (2018)
- Zhang LJ, Zhang XG, Shen LF, Gao B, Hao L, Lu XJ, Zhang F, Ding B, Yuan CZ, J. Power Sources, 199, 395 (2012)
- Hassan HMA, Abdelsayed V, Khder AERS, AbouZeid KM, Terner J, EI-Shall MS, Al-Resayes SI, El-Azhary AA, J. Mater. Chem., 19, 3832 (2009)
- Nethravathi C, Nisha T, Ravishankar N, Shivakumara C, Rajamathi M, Carbon, 47, 2054 (2009)
- Xu C, Wu XD, Zhu JW, Wang X, Carbon, 46, 386 (2008)
- Zhong JH, Wang AL, Li GR, Wang JW, Ou YN, Tong YX, J. Mater. Chem., 22, 5656 (2012)
- Liu Y, Zhou J, Zhang X, Liu Z, Wan X, Tian J, Wang T, Chen Y, Carbon, 47, 3113 (2009)
- He G, Wang L, Chen H, Sun X, Wang X, Mater. Lett., 98, 164 (2013)
- Liu X, Shi S, Xiong Q, Li L, Zhang Y, Tang H, Gu C, Wang X, Tu J, ACS Appl. Mater. Interfaces, 5, 8790 (2013)
- Chen Y, Qu B, Hu L, Xu Z, Li Q, Wang T, Nanoscale, 5, 9812 (2013)
- Yang W, Gao Z, Wang J, Ma J, Zhang M, Liu L, ACS Appl. Mater. Interfaces, 5, 5443 (2013)