Applied Chemistry for Engineering, Vol.30, No.3, 358-364, June, 2019
TEOS/염기 및 MTMS/산 혼성 용액으로 제조한 반사방지 코팅막의 특성
Characteristics of Anti-reflective Coating Film Prepared from Hybrid Solution of TEOS/Base and MTMS/Acid
E-mail:
초록
반사 방지(anti-reflective; AR) 코팅막의 광학 특성 및 내오염성을 향상하기 위하여 tetraethylorthosilicate (TEOS)/염기 및 methyltrimethoxysilane (MTMS)/산 혼성 용액의 혼합비를 변화시키며 다양한 AR 코팅막을 제조하였다. 제조된 AR 코팅막은 UV-Vis, 접촉각 측정기, AFM, FT-IR 및 연필 경도 시험을 통해 특성을 분석하였다. MTMS/산 용액의 함량이 10 wt%인 혼성 용액으로 제조한 AR 코팅막에서 유리 기판은 매우 우수한 광학 특성(97.2%의 투과율), 우수한 내오염성(121°의 물 접촉각 및 90°의 CH2I2 접촉각), 중간 정도의 기계적 강도(4 H의 연필 경도)를 나타내었다. 특히 우수한 내오염성은 기판의 표면 위에서 혼성 용액 내 소량의 MTMS/산 용액으로부터 유래된 메틸기(-CH3)의 고른 분산에 기인한 것으로 고려되었다. 연필 경도 시험 결과로부터, AR 코팅막의 기계적 강도는 MTMS/산 용액의 함량이 증가할수록 향상되는 것으로 나타났다.
To improve the optical characteristics and antifouling of anti-reflective coating (AR) films, various AR coating films were prepared by varying the mixing ratio of tetraethylorthosilicate (TEOS)/base and methyltrimethoxysilane (MTMS)/acid hybrid solution. Prepared AR coating films were characterized by UV-Vis spectroscopy, contact angle analyzer, atomic force microscope (AFM), FT-IR and pencil scratch hardness test. In an AR coating film that prepared from the hybrid solution with a 10 wt% MTMS/acid solution, the glass substrate showed an excellent optical property (97.2% transmittance), good antifouling (121° water contact angle and 90° CH2I2 contact angle) and moderate mechanical strength (pencil hardness of 4 H). In particular, it is considered that the good antifouling was due to the well dispersion of the methyl group (-CH3), derived from a small amount of MTMS/acid solution in the hybrid solution, on the substrate surface. From results of the pencil hardness test, the mechanical strength of AR coating film was improved as the content of MTMS/acid solution increased.
- Chen DG, Sol. Energy Mater. Sol. Cells, 68(3-4), 313 (2001)
- Nostell P, Roos A, Karlsson B, Sol. Energy Mater. Sol. Cells, 54(1), 223 (1998)
- Kesmez O, Burunkaya E, Kiraz N, Camurlu HE, Asilturk M, Arpac E, J. Non-Cryst. Solids, 357, 3130 (2011)
- Glaubitt W, Lobmann P, J. Eur. Ceram. Soc., 32, 2995 (2012)
- Bautista MC, Morales A, Sol. Energy Mater. Sol. Cells, 80(2), 217 (2003)
- Cathro K, Constable D, Solaga T, Sol. Energy, 32, 573 (1984)
- Brinker CJ, scherer GW, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 788-791, Academic Press, San Diego, USA (1990).
- Son DH, Lee YY, Kim SJ, Hong SS, Lee GD, Park SS, Appl. Chem. Eng., 22(6), 691 (2011)
- Wu G, Wang J, Shen J, Yang T, Zhang Q, Zhou B, Deng Z, Fan B, Zhou D, Zhang F, Mater. Res. Bull., B78, 135 (2000)
- Cai S, Zhang Y, Zhang H, Yan H, Lv H, Jiang B, ACS Appl. Mater. Interfaces, 6, 11470 (2014)
- Wu GM, Wang J, Shen J, Yang TH, Zhang QY, Zhou B, Deng ZH, Fan B, Zhou DP, Zhang FH, Mater. Res. Bull., 36(12), 2127 (2001)
- Wang J, Wu G, Shen J, Yang T, Zhang Q, Zhou B, Deng Z, Fan B, Zhou D, Zhang F, J. Sol-Gel Sci. Technol., 18, 219 (2000)
- Yoo BR, Jung DE, Polym. Sci. Technol., 20, 124 (2009)
- Zhang XX, Xia BB, Ye HP, Zhang YL, Xiao B, Yan LH, Lv HB, Jiang B, J. Mater. Chem., 22, 13132 (2012)
- Ye HP, Zhang XX, Zhang YL, Ye LQ, Xiao B, Lv HB, Jiang B, Sol. Energy Mater. Sol. Cells, 95(8), 2347 (2011)
- Li XG, Shen J, Thin Solid Films, 519(19), 6236 (2011)
- Bhagat SD, Rao AV, Appl. Surf. Sci., 252(12), 4289 (2006)
- Kim HS, Kim YH, Choi JY, Trans. Korean Hydrogen New Energy Soc., 25, 145 (2014)
- Keum YS, Kim HS, Park CS, Kim YH, Appl. Chem. Eng., 26(4), 400 (2015)
- Xu B, Cai JY, Finn N, Cai Z, Microporous Mesoporous Mater., 148, 145 (2012)
- Du M, Mao N, Russell SJ, J. Mater. Sci., 51(2), 719 (2016)
- Bikerman JJ, J. Phys. Chem., 54, 653 (1950)
- Tsujii K, Yamamoto T, Onda T, Shibuichi S, Angew. Chem.-Int. Edit., 36, 1011 (1997)
- Cho S, Cho H, J. Korean Chem. Soc., 57, 432 (2013)
- Rudawska A, Jacniacka E, Int. J. Adhes. Adhes., 29, 451 (2009)
- Budunoglu H, Yildirim A, Bayindir M, J. Mater. Chem., 22, 9671 (2012)