화학공학소재연구정보센터
Langmuir, Vol.35, No.13, 4471-4480, 2019
Investigation on Adsorption Mechanism of Peptides with Surface-Modified Super-Macroporous Resins
Macroporous adsorption resins (MARs) have experienced rapid growth because of their unique properties and applications. Recently, it was discovered that a series of MARs with super-macroporous and diverse functional groups were synthesized to adsorb and enrich peptides; however, the detailed change mechanism of pore diameter and element composition and peptide adsorption mechanism have not yet been established. In this study, MARs and modified MARs were prepared by the surfactant reverse micelles swelling method and Friedel Crafts reaction, and the pore diameter and element changes of these super-macroporous resin particles were accurately determined to elucidate formation processes of modified MARs. The adsorption mechanism of four peptides on different MARs was investigated. Sieving effect, electrostatic, hydrophobic, and hydrogen bonds interactions were found to play a major role in the adsorption process of peptides. Compared to that of the traditional resins, the adsorption capacity of super-macroporous MARs for peptides enormously increased. Electrostatic interactions have been explained perfectly by determining the isoelectric point. The molecular docking technology proved that the hydrogen-bonding receptor in MARS was a crucial factor for the adsorption capacity by autodock 4.26 and gromacs 5.14. These findings will enable selective adsorption of peptides by MARs, which also provides a theoretical basis for the construction of specific resin to adsorb different peptides.