Polymer, Vol.172, 221-230, 2019
Morphological effects on dielectric properties of poly(vinylidene fluoride-co-hexafluoropropylene) blends and multilayer films
Compared with chemical modification of ferroelectric poly (vinylidene fluoride) (PVDF) for electric energy storage, polymer blends, whether miscible or immiscible, represent a much easier approach to suppress the ferroelectricity of PVDF. In this study, we explored both miscible [i.e., poly (methyl methacrylate) or PMMA] and immiscible (i.e., polycarbonate or PC) blends with poly (VDF-co-hexafluoroethylene) [P(VDF-HFP)], as well as the PC/P(VDF-HFP) multilayer films. For miscible PMMA/P(VDF-HFP) blend films, the addition of PMMA significantly decreased the crystallinity of P(VDF-HFP). At a high PMMA content of ca. 40 wt%, the stretched PMMA/P(VDF-HFP) blend films started to exhibit the linear dielectric behavior with suppressed ferroelectricity. For the immiscible PC/P(VDF-HFP) blend films, a high PC content of 50 vol% was required to suppress the ferroelectricity in P(VDF-HFP). Instead, the PC/P(VDF-HFP) multilayer films started to show linear hysteresis loops when the content of P(VDF-HFP) was only 30 vol%. More importantly, the PC/P(VDF-HFP) multilayer films exhibited significantly higher breakdown strength than the blend films. This could be attributed to the perpendicular interfaces (with respect to the applied electric field), which serve as effective blocks for hot electrons injected from the metal electrodes to pass through the film. From this study, compared to conventional miscible and immiscible blends, multilayer films are promising for next generation film capacitors, aiming to achieve high temperature tolerance, high energy density, and low loss simultaneously.