화학공학소재연구정보센터
Process Safety and Environmental Protection, Vol.122, 169-184, 2019
Risk prediction and factors risk analysis based on IFOA-GRNN and apriori algorithms: Application of artificial intelligence in accident prevention
Risk prediction of disasters is one of the most effective ways to prevent accidents. To solve the problems in multi-factor complex disaster prediction, this paper proposes a new method for risk prediction and factorial risk analysis. Coal and gas outburst accidents were selected as research objects. First, a new coal and gas outburst prediction model was established that consists of 4 levels and 14 factors. Then, the Improved Fruit Fly Optimization Algorithm (IFOA) and the General Regression Neural Network (GRNN) algorithm were combined to establish the IFOA-GRNN prediction model. After that, the sensitivity analysis method was applied to the analysis of the sensitive factors of coal and gas outbursts. Finally, an apriori algorithm was used to mine the disaster information. The method proposed in this paper was applied to the Pingdingshan No. 8 Min. The application results show that the IFOA-GRNN algorithm proposed in this paper has an accuracy rate of 100% for the prediction of accident risk levels. Compared with the Back Propagation (BP), GRNN and FOA-GRNN algorithms,IFOA-GRNN has the characteristics of a smaller prediction error, higher stability and faster convergence. The sensitivity analysis method can judge the sensitive factors of coal and gas outbursts without knowing the mechanisms of the accident. The a priori algorithm can perform good data mining on the combination of high frequency factors leading to accidents and the relationships between the coal and gas outburst levels and factors. The data mining results are very helpful for the prevention and management of coal and gas outbursts. (C) 2018 Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.