화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.75, 123-129, July, 2019
Fouling reduction using the resonance vibration in membrane separation of whole milk
E-mail:
Resonance vibration mitigated membrane fouling during whole milk filtration by submerged membrane system with hollow fibers of polyvinylidene fluoride. Resonance vibration extended the filtration duration (70 kPa) by 54 times, compared with no vibration. Resonance vibration was found more effective for fouling reduction than mechanical vibration, at which module is vibrated mechanically without resonance effect. Fouling reduction performance of resonance vibration was not affected by packing density because every fiber oscillates at resonance vibration. Larger lateral displacement and smaller wave node were favored for fouling reduction. Use of long fiber for filtration decreased the frequency, but increased lateral displacement.
  1. Kumar P, Sharma N, Ranjan R, Kumar S, Bhat ZF, Jeong DK, Asian Australas. J. Anim. Sci., 26, 1347 (2013)
  2. Drioli E, Giorno L, Comprehensive Membrane Science and Engineering, Elsevier Science, Amsterdam, 2010.
  3. Velpula S, Umapathy KS, Thyarla A, Srikanth K, Saraff S, Int. J. Pure App. Biosci., 5, 389 (2017)
  4. Le TT, Cabaltica AD, Bui VM, J. Food Res. Technol., 2, 1 (2014)
  5. Galvao DF, Technological Approaches for Novel Application in Dairy Processing, (2018).
  6. Rosenberg M, Trends Food Sci. Technol., 6, 12 (1995)
  7. Malik AA, Kour H, Bhat A, Kaul RK, Khan S, Khan SU, Int. J. Food Nutr. Saf., 3, 147 (2013)
  8. Peinemann KV, Nunes SP, Giorno L, Membrane technology, Membranes for Food Applications, vol. 3, Wiley-VCH, Weinheim, 2010.
  9. Pafylias I, Cheryan M, Mehaia MA, Saglam N, Food Res. Int., 29, 141 (1996)
  10. De Phino MN, Semiao A. “Membrane processes in wine and dairy industries”, IPPC database, case studies, Instituto superior tecnico.
  11. Verwijst T, Baggerman J, Liebermann F, van Rijn CJM, J. Membr. Sci., 494, 121 (2015)
  12. Iorhemen OT, Hamza RA, Tay JH, Bioresour. Technol., 240, 9 (2017)
  13. Deowan SA, Galiano F, Hoinkis J, Johnson D, Altinkaya SA, Gabriele B, Hilal N, Drioli E, Figoli A, J. Membr. Sci., 510, 524 (2016)
  14. van den Berg GB, Smolders CA, Desalination, 77, 101 (1990)
  15. Wang FL, Tarabara VV, J. Colloid Interface Sci., 328(2), 464 (2008)
  16. Noble RD, Stern SA, Membrane Separations Technology, 1st ed., Elsevier Science, Amsterdam, 1995.
  17. Marcel Mulder, Basic Principles of Membrane Technology, 2nd ed., Kluwer Academic Publishers, Dordrecht, 1996.
  18. Jaffrin MY, J. Membr. Sci., 324(1-2), 7 (2008)
  19. Armando AD, Culkin B, Purchas DB, New separation system extends the use of membranes, Proceedings of Euromembrane’ 92 6, 459 (1992).
  20. Genkin G, Waite TD, Fane AG, Chang S, J. Membr. Sci., 281(1-2), 726 (2006)
  21. Beier SP, Guerra M, Garde A, Jonsson G, J. Membr. Sci., 281(1-2), 281 (2006)
  22. Kola A, Ye Y, Ho A, Le-Clech P, Chen VK, J. Membr. Sci., 409, 54 (2012)
  23. Kola A, Ye Y, Le-Clech P, Chen V, J. Membr. Sci., 455, 320 (2014)
  24. Chai M, Ye Y, Chen V, J. Membr. Sci., 524, 305 (2017)
  25. Li T, Law AWK, Fane AG, J. Membr. Sci., 455, 83 (2014)
  26. Resonance, https://en.wikipedia.org/wiki/Resonance.
  27. Standing Waves on a String, https://web.stanford.edu/dept/astro/dorris/StandingWaves.pdf.
  28. An Algebraic Derivation of the Standing Waver Problem, https://arxiv.org/ftp/arxiv/papers/0906/0906.0048.pdf.
  29. van der Marel P, Zwijnenburg A, Kemperman A, Wessling M, Temmink H, van der Meer W, J. Membr. Sci., 332(1-2), 24 (2009)
  30. Buzatu P, Qibawey H, Nasser MS, Judd S, Water Res., 126, 208 (2017)
  31. Zulewska J, Barbano DM, J. Dairy Sci., 97, 2619 (2014)