화학공학소재연구정보센터
Journal of Industrial and Engineering Chemistry, Vol.75, 202-210, July, 2019
Metal- and halide-free catalysts supported on silica and their applications to CO2 cycloaddition reactions
E-mail:
The production of cyclic carbonates from CO2 and epoxides has been extensively studied. We investigated the formation of a cyclic carbonate promoted by metal- and halide-free silica-supported alkanolamines. Moreover, we compared the obtained turnover numbers with those of the corresponding homogeneous catalysts and confirmed that the reusability of the proposed heterogeneous catalysts was enhanced by the utilization of polymer-type structures with amine/epoxy reaction around the silica. A cyclic carbonate yield of 70% and selectivity of 97% were achieved at 120 °C and 10 bar after five-fold reuse of the catalyst.
  1. Anderson TR, Hawkins E, Jones PD, Endeavour, 40, 178 (2016)
  2. Yin H, Mao X, Tang D, Xiao W, Xing L, Zhu H, Wang DH, Sadoway DR, Energy Environ. Sci., 6, 1538 (2013)
  3. Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD, Int. J. Greenhouse Gas Control, 2, 9 (2008)
  4. Seki T, Kokubo Y, Ichikawa S, Suzuki T, Kayaki Y, Ikariya T, Chem. Commun., 349 (2009).
  5. Yang H, Xu Z, Fan M, Gupta R, Slimane RB, Bland AE, Wright I, J. Environ. Sci., 20, 14 (2008)
  6. Xu XD, Moulijn JA, Energy Fuels, 10(2), 305 (1996)
  7. North M, Pasquale R, Young C, Green Chem., 12, 1514 (2010)
  8. Cokoja M, Bruckmeier C, Rieger B, Herrmann WA, Kuhn FE, Angew. Chem.-Int. Edit., 50, 8510 (2011)
  9. North M, Pasquale R, Angew. Chem.-Int. Edit., 48, 2946 (2009)
  10. Dai WL, Luo SL, Yin SF, Au CT, Appl. Catal. A: Gen., 366(1), 2 (2009)
  11. Cokoja M, Wilhelm ME, Anthofer MH, Herrmann WA, Kuhn FE, ChemSusChem, 8, 2436 (2015)
  12. Martin C, Fiorani G, Kleij AW, ACS Catal., 5, 1353 (2015)
  13. Alper E, Orhan OY, Petroleum, 3, 109 (2017)
  14. Huang SY, Liu SG, Li JP, Zhao N, Wei W, Sun YH, Fuel Chem.Technol., 35, 701 (2007)
  15. Shaikh AA, Sivaram S, Chem. Rev., 96(3), 951 (1996)
  16. Sakakura T, Kohno K, Chem. Commun., 1312 (2009).
  17. Bhanage BM, Fujita S, Ikushima Y, Arai M, Appl. Catal. A: Gen., 219(1-2), 259 (2001)
  18. Bai D, Duan S, Hai L, Jing H, ChemCatChem, 4, 1752 (2012)
  19. Zhang J, Cheng X, Zhang B, Shi J, Zheng L, Zhang J, Shao D, Tan X, Han B, Yang G, ChemCatChem, 10, 1 (2018)
  20. Song J, Zhang Z, Han B, Hu S, Li W, Xie Y, Green Chem., 10, 1337 (2008)
  21. He LN, Yasuda H, Sakakura T, Green Chem., 5, 92 (2003)
  22. Decortes A, Castilla AM, Kleij AW, Angew. Chem.-Int. Edit., 49, 9822 (2010)
  23. Zhang Y, Chan JYG, Energy Environ. Sci., 3, 408 (2010)
  24. Vieira MO, Monteiro WF, Neto BS, Ligabue R, Chaban VV, Einloft S, Catal. Lett., 148, 108 (2018)
  25. Chen J, Zhong M, Tao L, Liu L, Jayakumar S, Li C, Li H, Yang Q, Green Chem., 20, 903 (2018)
  26. Wu S, Teng C, Cai S, Jiang B, Wang Y, Meng H, Tao H, Nanoscale Res. Lett., 12, 609 (2017)
  27. Wu LX, Yang HP, Guan YB, Yang MP, Wang H, Lu JX, Int. J. Electrochem. Sci., 12, 8963 (2017)
  28. Lan DH, Yang FM, Luo SL, Au CY, Yin SF, Carbon, 73, 351 (2014)
  29. Yang ZZ, Zhao YN, He LN, RSC Adv., 1, 545 (2011)
  30. Sun J, Cheng WG, Fan W, Wang YH, Meng ZY, Zhang SJ, Catal. Today, 148(3-4), 361 (2009)
  31. Jadhav AH, Thorat GM, Lee K, Lim AC, Kang H, Seo JG, Catal. Today, 265, 56 (2016)
  32. Wasserscheid P, Welton T, Ionic Liquids in Synthesis, 2nd ed., Wiley-VCH, 2008.
  33. Sun J, Cheng WG, Fan W, Wang YH, Meng ZY, Zhang SJ, Catal. Today, 148(3-4), 361 (2009)
  34. Jadhav AH, Thorat GM, Lee K, Lim AC, Kang H, Seo JG, Catal. Today, 265, 56 (2016)
  35. Du Y, Cai F, Kong DL, He LN, Green Chem., 7, 518 (2005)
  36. Kim HG, Lim CS, Kim DW, Cho DH, Lee DK, Chung JS, Mol. Catal., 438, 121 (2017)
  37. Sun H, Zhang DJ, J. Phys. Chem. A, 111(32), 8036 (2007)
  38. Wang JQ, Dong K, Cheng WG, Sun J, Zhang SJ, Catal. Sci. Technol., 2, 1480 (2012)
  39. Tsutsumi Y, Yamakawa K, Yoshida M, Ema T, Sakai T, Org. Lett., 12, 5728 (2010)
  40. Bartholomew CH, Farrauto RJ, Fundamentals of Industrial Catalytic Processes, Wiley-VCH, 2011.
  41. Heck RM, Farrauto RJ, Gulati ST, Catalytic Air Pollution Control Commercial Technology, Wiley-VCH, 2009.
  42. Farrauto RJ, Dorazio L, Bartholomew CH, Introduction to Catalysis and Industrial Catalytic Process, Wiley-VCH, 2016.
  43. Skelton R, Dubois F, Zenobi R, Anal. Chem., 72, 1707 (2000)
  44. Kim DW, Moon YJ, Ji DH, Kim HG, Cho DH, ACS Sustain. Chem. Eng., 4, 4591 (2016)
  45. Sing KSW, Everett DH, Haul RAW, Moscou L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
  46. Rashinkar G, Salunkhe R, J. Mol. Catal. A-Chem., 316(1-2), 146 (2010)
  47. Sanclimens G, Crespo L, Pons M, Giralt E, Albericio F, Royo M, Tetrahedron Lett., 44, 1751 (2003)
  48. Yuan WZ, Tan YQ, Gong YY, Lu P, Lam JWY, Shen XY, Feng CF, Sung HHY, Lu YW, Williams ID, Sun JZ, Zhang YM, Tang BZ, Adv. Mater., 25(20), 2837 (2013)
  49. Yurchenko RJ, Dolina AV, Yurchenko AG, Russ. J. Appl. Chem., 84, 2013 (2011)
  50. Xu Q, Ding SY, Brunecky R, Bomble YJ, Himmel ME, Baker JO, Biotechnol. Biofuels, 6, 126 (2013)